Advertisement

Sex-biased natal dispersal in Hokkaido brown bears revealed through mitochondrial DNA analysis

  • Yuri Shirane
  • Michito ShimozuruEmail author
  • Masami Yamanaka
  • Hifumi Tsuruga
  • Saiko Hirano
  • Natsuo Nagano
  • Jun Moriwaki
  • Masanao Nakanishi
  • Tsuyoshi Ishinazaka
  • Takane Nose
  • Shinsuke Kasai
  • Masataka Shirayanagi
  • Yasushi Masuda
  • Yasushi Fujimoto
  • Masahiro Osada
  • Masao Akaishi
  • Tsutomu Mano
  • Ryuichi Masuda
  • Mariko Sashika
  • Toshio Tsubota
Original Article

Abstract

Understanding natal dispersal patterns is fundamental in the ecology and conservation biology of large wild carnivores. In this study, we used two approaches to determine genetic variation and dispersal patterns of brown bears in the Shiretoko Peninsula, eastern Hokkaido, Japan. The first approach was a large-scale genetic analysis. We analyzed haplotypes from the mitochondrial DNA (mtDNA) control region of 760 individual samples collected throughout the peninsula during 1998–2016. We detected seven haplotypes, including two that were confirmed for the first time. In females, the distribution of haplotypes was geographically structured, whereas haplotypes in males were distributed widely throughout the peninsula. Only some males in the lower peninsula had haplotypes that were not detected within the peninsula. The second approach was a local-scale genetic analysis, including intensive focal sampling in the Rusha area, a special wildlife protection area on the peninsula. Proportions of mtDNA haplotypes in adult bears were investigated and compared between the sexes. Although more than half of the females had the same haplotype, males had more diverse haplotypes, suggesting that they came to the Rusha area from other regions. Thus, our study revealed that mtDNA haplotype distribution has been maintained by female philopatry, and that bears exhibit male-biased dispersal. Furthermore, the lower peninsula appears to act as a contact zone between the peninsula and mainland Hokkaido, which is important for maintaining genetic diversity.

Keywords

Brown bears Dispersal Haplotype Mitochondrial DNA Ursus arctos 

Notes

Acknowledgements

We wish to thank Hatsusaburo Ose, the president of Shiretoko Fishery Cooperative, and all members of the cooperative for their kind support. We thank all members of Shiretoko Nature Foundation and South Shiretoko Brown bear Information Center for generous support. We also thank all people involved in the field research.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/4GZ0WW

Funding information

This study was conducted as part of the Kim-un Kamuy Project which was financially supported by AIR DO Co., Ltd. This study was financially supported also by Daikin Industries, Ltd. and The Mitsui & Co. Environment Fund.

Compliance with ethical standards

Ethics statement

All procedures were conducted in accordance with the Guidelines for Animal Care and Use of Hokkaido University, and were approved by the Animal Care and Use Committee of the Graduate School of Veterinary Medicine, Hokkaido University (Permit Number: JU1106, JU1151, JU1152 and 15009).

Supplementary material

10344_2018_1222_MOESM1_ESM.pdf (142 kb)
ESM 1 (PDF 142 kb)
10344_2018_1222_MOESM2_ESM.pdf (145 kb)
ESM 2 (PDF 145 kb)
10344_2018_1222_MOESM3_ESM.pdf (7.7 mb)
ESM 3 (PDF 7.72 mb)
10344_2018_1222_MOESM4_ESM.pdf (6.3 mb)
ESM 4 (PDF 6.29 mb)
10344_2018_1222_MOESM5_ESM.xlsx (19 kb)
ESM 5 (XLSX 19.2 kb)
10344_2018_1222_MOESM6_ESM.pdf (4.4 mb)
ESM 6 (PDF 4.43 mb)
10344_2018_1222_MOESM7_ESM.pdf (10.6 mb)
ESM 7 (PDF 10.6 mb)
10344_2018_1222_MOESM8_ESM.xlsx (14 kb)
ESM 8 (XLSX 13.8 kb)

References

  1. Bellemain E, Swenson JE, Taberlet P (2006) Mating strategies in relation to sexually selected infanticide in a non-social carnivore: the Brown bear. Ethology 112:238–246.  https://doi.org/10.1111/j.1439-0310.2006.01152.x CrossRefGoogle Scholar
  2. Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16:501–516.  https://doi.org/10.1111/j.1365-294X.2006.03159.x CrossRefPubMedGoogle Scholar
  3. Blanchard BM, Knight RR (1991) Movements of yellowstone grizzly bears. Biol Conserv 58:41–67.  https://doi.org/10.1016/0006-3207(91)90044-A CrossRefGoogle Scholar
  4. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519.  https://doi.org/10.1016/J.ECOLMODEL.2006.03.017 CrossRefGoogle Scholar
  5. Clobert J, Le Galliard J-F, Cote J et al (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209.  https://doi.org/10.1111/j.1461-0248.2008.01267.x CrossRefPubMedGoogle Scholar
  6. Cummings MP (2014) PAUP* (phylogenetic analysis using parsimony (and other methods)). Dict Bioinforma Comput BiolGoogle Scholar
  7. Dahle B, Swenson JE (2003) Seasonal range size in relation to reproductive strategies in brown bears Ursus arctos. J Anim Ecol 72:660–667CrossRefGoogle Scholar
  8. Delibes M, Gaona P, Ferreras P (2001) Effects of an attractive sink leading into maladaptive habitat selection. Am Nat 158:277–285.  https://doi.org/10.1086/321319 CrossRefPubMedGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Glenn LP, Miller LH (1980) Seasonal movements of an Alaska peninsula brown bear population. Bears Their Biol Manag 4:307–312.  https://doi.org/10.2307/3872885 CrossRefGoogle Scholar
  11. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162.  https://doi.org/10.1016/S0003-3472(80)80103-5 CrossRefGoogle Scholar
  12. Hirata D, Mano T, Abramov AV, Baryshnikov GF, Kosintsev PA, Vorobiev AA, Raichev EG, Tsunoda H, Kaneko Y, Murata K, Fukui D, Masuda R (2013) Molecular phylogeography of the brown bear (Ursus arctos) in northeastern Asia based on analyses of complete mitochondrial DNA sequences. Mol Biol Evol 30:1644–1652.  https://doi.org/10.1093/molbev/mst077 CrossRefPubMedGoogle Scholar
  13. Hokkaido Government (2017) Brown bear management plan in Hokkaido. http://www.pref.hokkaido.lg.jp/ks/skn/higuma/hokkaido_bear_management_plan05.pdf
  14. Howard WE (1960) Innate and environmental dispersal of individual vertebrates. Am Midl Nat 63:152–161.  https://doi.org/10.2307/2422936 CrossRefGoogle Scholar
  15. Itoh T, Sato Y, Mano T, Iwata R (2009) Estimating a suitable microsatellite marker set for individual identification and parentage tests of brown bear (Ursus arctos) in the Akan–Shiranuka region, eastern Hokkaido, Japan. Jpn For Soc Springer 14:117–122.  https://doi.org/10.1007/s10310-009-0110-3 CrossRefGoogle Scholar
  16. Itoh T, Sato Y, Kobayashi K, Mano T, Iwata R (2012) Effective dispersal of brown bears (Ursus arctos) in eastern Hokkaido, inferred from analyses of mitochondrial DNA and microsatellites. Mammal Study 37:29–41.  https://doi.org/10.3106/041.037.0104 CrossRefGoogle Scholar
  17. Itoh T, Sato Y, Tsuruga H, Mano T, Kohira M, Yamanaka M, Kasai S, Kobayashi K, Iwata R (2013) Estimating the population structure of brown bears in eastern Hokkaido based on microsatellite analysis. Acta Theriol (Warsz) 58:127–138.  https://doi.org/10.1007/s13364-012-0095-8 CrossRefGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  19. Kohira M, Okada H, Nakanishi M, Yamanaka M (2009) Modeling the effects of human-caused mortality on the brown bear population on the Shiretoko peninsula, Hokkaido, Japan. Ursus 20:12–21CrossRefGoogle Scholar
  20. Kojola I, Danilov PI, Laitala H-M et al (2003) Brown bear population structure in core and periphery: analysis of hunting statistics from Russian Karelia and Finland. Ursus 14:17–20Google Scholar
  21. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.  https://doi.org/10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  23. Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116.  https://doi.org/10.1111/2041-210X.12410 CrossRefGoogle Scholar
  24. Lewis TM, Pyare S, Hundertmark KJ (2015) Contemporary genetic structure of brown bears (Ursus arctos) in a recently deglaciated landscape. J Biogeogr 42:1701–1713.  https://doi.org/10.1111/jbi.12524 CrossRefGoogle Scholar
  25. Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455.  https://doi.org/10.1046/j.1365-294x.1998.00495.x CrossRefPubMedGoogle Scholar
  26. Mace RD, Waller JS (1997) Spatial and temporal interaction of male and female grizzly bears in northwestern Montana. J Wildl Manag 61:39–52.  https://doi.org/10.2307/3802412 CrossRefGoogle Scholar
  27. Masuda R, Tamura T, Takahashi O (2006) Ancient DNA analysis of brown bear skulls from a ritual rock shelter site of the Ainu culture at Bihue, central Hokkaido, Japan. Anthropol Sci 114:211–215.  https://doi.org/10.1537/ase.051219 CrossRefGoogle Scholar
  28. Matsuhashi T, Masuda R, Mano T, Yoshida MC (1999) Microevolution of the mitochondrial DNA control region in the Japanese brown bear (Ursus arctos) population. Mol Biol Evol 16:676–684CrossRefGoogle Scholar
  29. Matsuhashi T, Masuda R, Mano T, Murata K, Aiurzaniin A (2001) Phylogenetic relationships among worldwide populations of the brown bear Ursus arctos. Zool Sci 18:1137–1143.  https://doi.org/10.2108/zsj.18.1137 CrossRefGoogle Scholar
  30. McLellan BN, Hovey FW (2001) Natal dispersal of grizzly bears. Can J Zool 79:838–844.  https://doi.org/10.1139/z01-051 CrossRefGoogle Scholar
  31. Meredith EP, Rodzen JA, Banks JD, Jones KC (2009) Characterization of 29 tetranucleotide microsatellite loci in black bear (Ursus americanus) for use in forensic and population applications. Conserv Genet 10:693–696.  https://doi.org/10.1007/s10592-008-9617-y CrossRefGoogle Scholar
  32. Moore JA, Draheim HM, Etter D, Winterstein S, Scribner KT (2014) Application of large-scale parentage analysis for investigating natal dispersal in highly vagile vertebrates: a case study of American black bears (Ursus americanus). PLoS One 9:e91168.  https://doi.org/10.1371/journal.pone.0091168 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nylander J (2004) MrModeltest v2. Program distributed by the author. Uppsala UniversityGoogle Scholar
  34. Ostrander EA, Sprague GF, Rine J (1993) Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 16:207–213.  https://doi.org/10.1006/GENO.1993.1160 CrossRefPubMedGoogle Scholar
  35. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354.  https://doi.org/10.1111/j.1365-294X.1995.tb00227.x CrossRefGoogle Scholar
  36. Paetkau D, Shields GF, Strobeck C (1998) Gene flow between insular, coastal and interior populations of brown bears in Alaska. Mol Ecol 7:1283–1292.  https://doi.org/10.1046/j.1365-294x.1998.00440.x CrossRefPubMedGoogle Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  38. Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: Version 2.3. http://pritch.bsd.uchicago.edu/structure.html. Accessed 19 Sep 2018
  39. Proctor MF, McLellan BN, Strobeck C, Barclay RM (2004) Gender-specific dispersal distances of grizzly bears estimated by genetic analysis. Can J Zool 82:1108–1118.  https://doi.org/10.1139/z04-077 CrossRefGoogle Scholar
  40. Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sæther B-E, Engen S, Swenson JE, Bakke Ø, Sandegren F, Saether BE, Bakke O (1998) Assessing the viability of Scandinavian Brown bear, Ursus arctos, populations: the effects of uncertain parameter estimates. Oikos 83:403–416.  https://doi.org/10.2307/3546856 CrossRefGoogle Scholar
  42. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  43. Sato Y, Itoh T, Mori Y, Satoh Y, Mano T (2011) Dispersal of male bears into peripheral habitats inferred from mtDNA haplotypes. Ursus 22:120–132.  https://doi.org/10.2192/URSUS-D-10-00037.1 CrossRefGoogle Scholar
  44. Schregel J, Kopatz A, Hagen SB et al (2012) Limited gene flow among brown bear populations in far northern Europe? Genetic analysis of the east-west border population in the Pasvik Valley. Mol Ecol 21:3474–3488.  https://doi.org/10.1111/j.1365-294X.2012.05631.x CrossRefPubMedGoogle Scholar
  45. Schwartz CC, Keating KA, Reynolds HVI et al (2003) Reproductive maturation and senescence in the female brown bear. Ursus 14:109–119Google Scholar
  46. Shafer ABA, Côté SD, Coltman DW (2011) Hot spots of genetic diversity descended from multiple Pleistocene Refugia in an alpine ungulate. Evolution (N Y) 65:125–138.  https://doi.org/10.1111/j.1558-5646.2010.01109.x CrossRefGoogle Scholar
  47. Shimozuru M, Yamanaka M, Nakanishi M, Moriwaki J, Mori F, Tsujino M, Shirane Y, Ishinazaka T, Kasai S, Nose T, Masuda Y, Tsubota T (2017) Reproductive parameters and cub survival of brown bears in the Rusha area of the Shiretoko peninsula, Hokkaido, Japan. PLoS One 12:e0176251.  https://doi.org/10.1371/journal.pone.0176251 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Støen O-G, Zedrosser A, Sæbø S, Swenson JE (2006) Inversely density-dependent natal dispersal in brown bears Ursus arctos. Oecologia 148:356–364.  https://doi.org/10.1007/s00442-006-0384-5 CrossRefPubMedGoogle Scholar
  49. Taberlet P, Bouvet J (1994) Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in Europe. Proc R Soc B Biol Sci 255:195–200.  https://doi.org/10.1098/rspb.1994.0028 CrossRefGoogle Scholar
  50. Taberlet P, Swenson JE, Sandegren F, Bjarvall A (1995) Localization of a contact zone between two highly divergent mitochondrial DNA lineages of the brown bear Ursus arctos in Scandinavia. Conserv Biol 9:1255–1261CrossRefGoogle Scholar
  51. Taberlet P, Camarra J-J, Griffin S, Uhres E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869–876.  https://doi.org/10.1046/j.1365-294X.1997.00251.x CrossRefPubMedPubMedCentralGoogle Scholar
  52. Waits L, Paetkau D, Strobeck C et al (1999) Genetics of the bears of the world. In: Herrero S, Peyton B, Servheen C (eds) Bears: status survey and conservation action plan. The International Union for Conservation of Nature, Gland, pp 25–32Google Scholar
  53. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168.  https://doi.org/10.2307/1938423 CrossRefGoogle Scholar
  54. Yamamoto K, Tsubota T, Komatsu T et al (2002) Sex identification of Japanese black bear, Ursus thibetanus japonicus, by PCR based on Amelogenin gene. J Vet Med Sci 64:505–508.  https://doi.org/10.1292/jvms.64.505 CrossRefPubMedGoogle Scholar
  55. Zedrosser A, Støen O-G, Sæbø S, Swenson JE (2007) Should I stay or should I go? Natal dispersal in the brown bear. Anim Behav 74:369–376.  https://doi.org/10.1016/J.ANBEHAV.2006.09.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuri Shirane
    • 1
  • Michito Shimozuru
    • 1
    Email author
  • Masami Yamanaka
    • 2
  • Hifumi Tsuruga
    • 3
  • Saiko Hirano
    • 1
  • Natsuo Nagano
    • 1
  • Jun Moriwaki
    • 1
  • Masanao Nakanishi
    • 2
  • Tsuyoshi Ishinazaka
    • 2
  • Takane Nose
    • 2
  • Shinsuke Kasai
    • 2
  • Masataka Shirayanagi
    • 2
  • Yasushi Masuda
    • 2
  • Yasushi Fujimoto
    • 4
  • Masahiro Osada
    • 5
  • Masao Akaishi
    • 4
  • Tsutomu Mano
    • 3
  • Ryuichi Masuda
    • 6
  • Mariko Sashika
    • 1
  • Toshio Tsubota
    • 1
  1. 1.Department of Environmental Veterinary Science, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  2. 2.Shiretoko Nature FoundationHokkaidoJapan
  3. 3.Hokkaido Research OrganizationSapporoJapan
  4. 4.South Shiretoko Brown Bear Information CenterShibetsuJapan
  5. 5.Shibetsu Town OfficeShibetsuJapan
  6. 6.Department of Biological Sciences, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations