Effects of Deficit Irrigation and Mulching on Morpho-physiological and Biochemical Characteristics of Konservolia Olives

  • Rahmatollah GholamiEmail author
  • Seyed Morteza Zahedi
Original Article


The present study aimed at investigating the effect of deficit irrigation and mulching on morpho-physiological and biochemical characteristics of 15-year-old Konservolia olive trees in Dallaho Olive Research Station in Kermanshah province, Iran, in 2014 and 2015. The experiments were conducted in factorial randomized complete block design with three replications. The first factor included irrigation treatments (100% irrigation [control], 75% deficit irrigation, and 50% deficit irrigation) and the second one included mulches (polyethylene, organic [straw], and no mulch). The results clarified that there is a significant difference between deficit irrigation and mulch treatments due to their effects on the characteristics measured in this study. The highest current season shoot growth and diameter was observed in presence of 100% irrigation and straw and polyethylene mulches. Increasing water stress decreased relative water content and chlorophyll content, while using straw and polyethylene mulches increased them, compared with the mulch-free condition. Increasing water stress enhanced ionic leakage, proline content, soluble sugars, phenol content, and malondialdehyde, while using mulches reduced these characteristics. As a result, deficit irrigation can be performed without any damages to the trees if it is accompanied with straw and polyethylene mulches and this can save irrigation water in olive orchards.


Malondialdehyde Polyethylene Proline Straw Water stress 

Auswirkungen der Defizitbewässerung und des Mulchens auf die morphophysiologischen und biochemischen Eigenschaften von Konservolia-Oliven


Die vorliegende Studie zielte darauf ab, die Auswirkungen der Defizitbewässerung und des Mulchens auf die morphophysiologischen und biochemischen Eigenschaften von 15-jährigen Konservolia-Olivenbäumen in der Dallaho Olive Research Station in der Provinz Kermanshah, Iran, in den Jahren 2014 und 2015 zu untersuchen. Die Experimente wurden im faktoriellen randomisierten vollständigen Blockdesign mit drei Replikationen durchgeführt. Der erste Faktor umfasste Bewässerungsbehandlungen (100 % Bewässerung [Kontrolle], 75 % Defizitbewässerung und 50 % Defizitbewässerung) und der zweite Faktor beinhaltete die Verwendung von Mulchen (Polyethylenmulch, Bio-Mulch [Strohmulch] und kein Mulch). Die Ergebnisse verdeutlichten, dass aufgrund der Auswirkungen auf die in dieser Studie gemessenen Charakteristika ein signifikanter Unterschied zwischen der Defizitbewässerung und der Mulchbehandlung besteht. Das höchste Triebwachstum und der höchste Triebdurchmesser der aktuellen Saison wurden bei 100 % Bewässerung sowie Stroh- und Polyethylenmulch beobachtet. Zunehmender Wasserstress verringerte den relativen Wassergehalt und den Chlorophyllgehalt, während die Verwendung von Stroh- und Polyethylenmulch diese im Vergleich zum mulchfreien Zustand erhöhte. Steigender Wasserstress erhöhte den Ionenverlust, den Prolingehalt, den Gehalt an löslichen Zuckern, den Phenolgehalt und den Malondialdehydgehalt, während die Verwendung von Mulchen diese Eigenschaften reduzierte. Infolgedessen kann eine Defizitbewässerung ohne Schäden an den Bäumen durchgeführt werden, wenn sie mit dem Einsatz von Stroh- und Polyethylenmulchen einhergeht. Dadurch kann Bewässerungswasser in Olivenhainen eingespart werden.


Malondialdehyd Polyethylen Prolin Stroh Wasserstress 



The authors thank Mr. Hajiamiri and Mr. Najafi for help in conducting the experiment.


The experimental part of this study was supported by the Dallaho Olive Research Station of Sarpol-e zahab in Kermanshah province, Iran.

Conflict of interest

R. Gholami and S.M. Zahedi declare that they have no competing interests.


  1. Arzani K, Arji I (2000) The effect of water stress and deficit irrigation on young potted olive cv. Local-Roghani Roodbar. Acta Hortic 537:879–885CrossRefGoogle Scholar
  2. Ashrafuzzaman M, Halim MA, Ismail MR, Shahidullah SM, Hossain MA (2011) Effect of plastic mulch on growth and yield of Chilli (Capsicum annuum L.). Braz Arch Biol Technol 54(2):321–330CrossRefGoogle Scholar
  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  4. Boughalleb F, Mhamdi M (2011) Possible involvement of proline and the antioxidant defense systems in drought tolerance of three olive cultivars grown under increasing water deficit regimes. Agric J 6(6):371–391Google Scholar
  5. Bunna S, Sinath P, Makara O, Mitchell J, Fukai S (2011) Effects of straw mulch on mungbean yield in rice fields with strongly compacted soils. Field Crop Res 124:295–301CrossRefGoogle Scholar
  6. Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44(10):1627–1629CrossRefGoogle Scholar
  7. Calatrava J, Franco JA (2011) Using pruning residues as mulch: analysis of its adoption and process of diffusion in southern Spain olive orchards. J Environ Manage 92(3):620–629CrossRefGoogle Scholar
  8. Camposeo S, Vivaldi GA (2011) Short-term effects of de-oiled olive pomace mulching application on a young super high-density olive orchard. Sci Hortic 129:613–621CrossRefGoogle Scholar
  9. Chai Q, Gan Y, Zhao C, Xu HL, Waskom RM, Niu Y, Siddique KHM (2015) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev. Google Scholar
  10. Dere S, Gunes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll a, b and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–17Google Scholar
  11. Doupis G, Bertaki M, Psarras G, Kasapakis I, Chartzoulakis K (2013) Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes. Sci Hortic 153:150–156CrossRefGoogle Scholar
  12. Elhami B, Zaare-Nahandi F, Jahanbakhsh-Godehkahriz S (2015) Effect of sodium nitroprusside (SNP) on physiological and biological responses of olive (Olea europaea L. cv. Conservolia) under water stress. Int J Biosci 6(4):148–156CrossRefGoogle Scholar
  13. FAO (2008) http// Accessed 27 Nov 2013
  14. Gholami R, Arzani K, Arji I (2013) Effect of Paclobutrazol (PBZ) and different irrigation amounts on vegetative growth and performance of young olive plants cv. manzanillo. J Hortic Sci 26(4):402–408Google Scholar
  15. Gholami R, Zahedi SM (2019a) Reproductive Behavior and Water Use Efficiency of Olive Trees (Olea europaea L. cv Konservolia) Under Deficit Irrigation and Mulching. Erwerbs-Obstbau. Google Scholar
  16. Gholami R, Zahedi SM (2019b) Identifying superior drought-tolerant olive genotypes and their biochemical and some physiological responses to various irrigation levels. J Plant Nutr 42(17):2057–2069CrossRefGoogle Scholar
  17. Greenly KM, Rakow DA (1995) The effect of wood mulch type and depth on weed and tree growth and certain soil parameters. J Arboric 21(5):225–232Google Scholar
  18. Gucci R, Lombardini L, Tattini M (1997) Analysis of leaf water relations in leaves of two olive (Olea europaea L.) cultivars differing in tolerance to salinity. Tree Physiol 17:13–21CrossRefGoogle Scholar
  19. Hosseini A, Nemati H (2014) Effect of irrigation interval on growth characteristics, qualitative and quantitative yield of tomato (Solanum lycopersicum L.) under mulch application. J Agroecol 6(3):552–560Google Scholar
  20. I.O.O.C (2002) Methodology for the primary characterization of olive varieties. Project on conservation, characterization, collection of Genetic Resources in olive. International Olive Oil Council, p 15Google Scholar
  21. Jalota SK (1993) Evaporation Through a soil mulch in relation to characteristics and evaporativity. Aust J Soil Res 31:131–136CrossRefGoogle Scholar
  22. Jiang Y, Hung B (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436–442CrossRefGoogle Scholar
  23. Korkmaz AMU, Demirkiran AR (2007) Acetyl salicylic acid alleviates chilling-induced damage in muskmelon plants. Can J Plant Sci 87:581–585CrossRefGoogle Scholar
  24. Machado M, Felizardo C, Fernandes-Silva AA, Nunes FM, Barros A (2013) Polyphenolic compounds, antioxidant activity and L‑phenylalanine ammonia-lyase activity during ripening of olive cv. Cobrançosa under different irrigation regimes. Food Res Int 51:412–421CrossRefGoogle Scholar
  25. Michelakis N, Vouyoukalou E, Clapaki G (1995) Plant growth and yield response of the olive tree cv. Kalamon for different levels of soil water potential and methods of irrigation. Hortic Sci 9:136–139Google Scholar
  26. Morello JR, Romero MP, Ramo T, Motilva MI (2005) Evaluation of l‑phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci 168(1):65–72CrossRefGoogle Scholar
  27. Motilva MJ, Tovar MJ, Romero MP, Alegre S, Girona J (2000) Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J Agric Food Chem 80(14):2037–2043CrossRefGoogle Scholar
  28. Nuzzo V, Xiloyannis C, Dichio B, Montonaro G, Celano G (1997) Growth and yield in irrigated and nonirrigated olive trees cv. Coratina. Acta Hortic 449:74–82Google Scholar
  29. Petridis A, Therios I, Samouris G, Koundouras S, Giannakoula A (2012) Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiol Biochem 60:1–11CrossRefGoogle Scholar
  30. Pinheiro C, Passarinho JA, Ricardo CP (2004) Effect of drought and rewatering on metabolism of Lupinus albus organs. J Plant Physiol 161:1203–1210CrossRefGoogle Scholar
  31. Rosecrance RC, Krueger WH, Milliron L, Bloese J, Garcia C, Mori B (2015) Moderate regulated deficit irrigation can increase olive oil yields and decrease tree growth in super high density Arbequina olive orchards. Sci Hortic 190:75–82CrossRefGoogle Scholar
  32. Roussos PA, Denaxa NK, Damvakaris T, Stournaras V, Argyrokastritis I (2010) Effect of alleviating products with different mode of action on physiology and yield of olive under drought. Sci Hortic 125:700–711CrossRefGoogle Scholar
  33. Scopel E, Da Silva FAM, Corbeels M, Affholder F, Maraux F (2004) Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24:383–395CrossRefGoogle Scholar
  34. Shahriari S (2011) The study on the effect of irrigation levels and mulch application on growth indices and essential oil content of peppermint (Mentha piperita L.). Planta Med 18:77–88Google Scholar
  35. Singer CK, Martin CA (2009) Effect of landscape mulches and drip irrigation on transplant establishment and growth of three North American desert native plants. J Environ Hortic 27(3):166–170Google Scholar
  36. Singleton VL, Rossi JRJA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungastic reagents. Am J Enol Vitic 16:144–158Google Scholar
  37. Srivatata BK, Sharma AK, Singh AK, Pandey VB (1984) Effects of organic mulches and irrigation levels on soil temperature water economy and yield of summe tomato. Veg Sci 11:1–9Google Scholar
  38. Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, Troger J, Munoz K, Fror O, Schaumann GL (2016) Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci Total Environ 550:690–705CrossRefGoogle Scholar
  39. Stewart RRC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248CrossRefGoogle Scholar
  40. Wang C, Wang H, Zhao X, Chen B, Wang F (2015) Mulching affects photosynthetic and chlorophyll a fluorescence characteristics during stage III of peach fruit growth on the rain-fed semiarid Loess Plateau of China. Sci Hortic 194:246–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Crop and Horticultural Science Research DepartmentKermanshah Agricultural and Natural Resources Research and Education Center, AREEOKermanshahIran
  2. 2.Department of Horticultural Science, Faculty of AgricultureUniversity of MaraghehMaraghehIran

Personalised recommendations