Advertisement

Gesunde Pflanzen

, Volume 71, Issue 1, pp 61–71 | Cite as

Antifungal Effect of Boron Compounds Against Three Rhizoctonia solani AG-4 Subgroups Causing Root and Crown Rot

  • I. ErperEmail author
  • E. Yıldırım
  • M. Türkkan
Original Article
  • 40 Downloads

Abstract

Rhizoctonia root and crown rot, caused by three subgroups of Rhizoctonia solani anastomosis group (AG)-4 (AG-4 HG-I, -II, and -III), is one of the most important diseases of winter squash (Cucurbita maxima) in the Black Sea region of Turkey. In this study, we evaluated the inhibitory effect of boric acid (H3BO3), three borates (disodium octaborate tetrahydrate, disodium tetraborate decahydrate, and disodium tetraborate), and tolclophos methyl on the mycelial growth of isolates from the three R. solani AG-4 subgroups. In vitro test results showed that the inhibitory effects of boric acid and the borates against Rhizoctonia isolates differed. However, they completely inhibited mycelial growth of all three subgroups at concentrations of 1%. With the exception of AG-4 HG-I, 0.03125% tolclophos methyl reduced mycelial growth by 95.07–97.61%. However, there was no significant difference between 0.03125% tolclophos methyl and its higher concentrations (p < 0.05). The values of concentration that caused 50% reduction (ED50), minimum inhibition concentration (MIC), and minimum fungicidal concentration of the compounds varied depending on the R. solani subgroup. Disodium tetraborate was the most toxic boron compound. The MIC value of the four boron compounds also varied between 0.25 and 0.5%. Soil bioassays showed that the four boron compounds and tolclophos methyl completely inhibited mycelial growth of AG-4 HG-II and -III isolates at 1% or at lower concentrations. At concentrations of 0.125–0.25% the boron compounds were found to be phytotoxic to winter squash seeds in terms of root elongation, whereas no phytotoxicity in terms of seed germination was seen for any concentration of the tested compounds. The results suggest the boron compounds may serve as an alternative to synthetic fungicides against Rhizoctonia root and crown rot of winter squash.

Keywords

Rhizoctoniasolani Boron compounds Root rot Crown rot Toxicity 

Fungizide Wirkung von Borverbindungen gegen 3 Wurzel- und Kronenfäule verursachende Untergruppen von Rhizoctonia solani der AG-4

Zusammenfassung

Die Wurzel- und Kronenfäule durch Rhizoctonia, verursacht durch 3 Untergruppen von Rhizoctonia solani der Anastomosegruppe-4 (AG-4 HG-I, -II und -III), ist eine der wichtigsten Krankheiten des Winterkürbisses (Cucurbita maxima) im Schwarzmeerraum in der Türkei. In dieser Studie wurde die inhibitorische Wirkung von Borsäure, 3 Boraten (in Form von Dinatriumoctaborat-Tetrahydrat, Dinatriumtetraborat-Decahydrat und Dinatriumtetraborat ) und Tolclophosmethyl auf das Myzelwachstum der Isolate aus den 3 Untergruppen von R. solani der AG-4 untersucht. Nach den Ergebnissen von In-vitro-Tests waren die hemmenden Wirkungen von Borsäure und den Boraten gegen Rhizoctonia-Isolate unterschiedlich. Sie hemmten jedoch das myzeliale Wachstum aller 3 Untergruppen bei Konzentrationen von 1 % vollständig. Mit Ausnahme der AG-4 HG-I reduzierte 0,03125 % Tolclophosmethyl das myzeliale Wachstum um 95,07–97,61 %. Es gab jedoch keinen signifikanten Unterschied zwischen 0,03125 % Tolclophosmethyl und dessen höheren Konzentrationen (p < 0,05). Die ED50-Werte, die minimale Hemmkonzentration (MHK) und die minimale fungizide Konzentration (MFK) der in dieser Studie verwendeten Verbindungen variierten je nach Untergruppe von R. solani der AG-4. Unter den Borverbindungen war Dinatriumtetraborat das giftigste für die Isolate. Auch der MHK-Wert der 4 Borverbindungen lag zwischen 0,25 und 0,5 %. Boden-Bioassays zeigten, dass alle 4 Borverbindungen sowie Tolclophosmethyl das myzeliale Wachstum von AG-4-HG-II- und -III-Isolaten bei 1 % oder niedrigeren Konzentrationen vollständig hemmen. Darüber hinaus wurde festgestellt, dass die Anwendung der Borverbindungen in Konzentrationen von 0,125–0,25 % phytotoxisch für Winterkürbissamen in Bezug auf die Wurzelverlängerung ist, während die getesteten Verbindungen in allen Konzentrationen keine Phytotoxizität in Bezug auf die Samenkeimung aufwiesen. Diese Ergebnisse deuten darauf hin, dass Borverbindungen als potenzielle Alternative zu synthetischen Fungiziden zur Kontrolle der Wurzel- und Kronenfäule durch Rhizoctonia beim Winterkürbis dienen können.

Schlüsselwörter

Rhizoctoniasolani Borverbindungen Wurzelfäule Kronenfäule Toxizität 

Notes

Conflict of interest

I. Erper, E. Yıldırım, and M. Türkkan declare that they have no competing interests.

References

  1. Araùjo ASF, Monteiro RTR (2005) Plant bioassays to assess toxicity of textile sludge compost. Sci Agric Piracicaba Brazil 62:286–290CrossRefGoogle Scholar
  2. Arslan U (2015) Evaluation of antifungal activity of sulfur containing salts against phytopathogenic fungi. Fresenius Environ Bul 24(5a):1879–1886Google Scholar
  3. Arslan U, Ilhan K, Vardar C, Karabulut OA (2009) Evaluation of antifungal activity of food additives against soilborne phytopathogenic fungi. World J Microbiol Biotechnol 25:537–543CrossRefGoogle Scholar
  4. Cao B, Hua L, Shiping T, Guozheng Q (2012) Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium expansum in jujube fruit. Postharvest Biol Technol 68:16–21CrossRefGoogle Scholar
  5. Carling DE, Kuninaga S, Brainard KA (2002) Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92:43–50CrossRefGoogle Scholar
  6. Cebi Kilicoglu M, Ozkoc I (2010) Molecular characterization of Rhizoctonia solani AG 4 using PCR-RFLP of the rDNA-ITS region. Turk J Biol 34:261–269Google Scholar
  7. Cervilla LM, Blasco B, Ríos JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756CrossRefGoogle Scholar
  8. Demirci E, Doken MT (1993) Anastomosis groups and pathogenicity of Rhizoctonia solani Kuhn isolates from potatoes in Erzurum-Turkiye. J Turk Phytopathol 22:95–102Google Scholar
  9. DePasquale DA, Montville TJ (1990) Mechanism by which ammonium bicarbonate and ammonium sulfate inhibit mycotoxigenic fungi. Appl Environment Microbiol 56:3711–3717Google Scholar
  10. Dong W, Li Y, Duan C, Li X, Naito S, Conner RL, Yang G, Li C (2017) Identification of AG-V, a new anastomosis group of binucleate Rhizoctonia spp. from taro and ginger in Yunnan province. Eur J Plant Pathol.  https://doi.org/10.1007/s10658-016-1144-y Google Scholar
  11. Erper I, Türkkan Karaca Kılıc MGHG (2011b) Evaluation of in vitro antifungal activity of potassium bicarbonate against Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp. Afric J Biotechnol 10(43):8605–8612CrossRefGoogle Scholar
  12. Erper I, Balkaya A, Türkkan M, Kılıç G (2015) Determination of fungal pathogens causing root and crown rot in winter squash (Cucurbita maxima Duch.) growing areas in the Black Sea region and reactions ofsome winter squash genotypes against these pathogens. Anadolu J Agric Sci 30:15–23CrossRefGoogle Scholar
  13. Erper I, Cebi-Kilicoglu M, Türkkan M, Onder H (2016) Characterization and pathogenicity of Rhizoctonia spp. isolated from winter squash in the Black Sea region of Turkey. Eur J Plant Pathol 146:683–697CrossRefGoogle Scholar
  14. Erper I, Karaca GH, Ozkoc I (2011a) Identification and pathogenicity of Rhizoctonia species isolated from bean and soybean plants in Samsun, Turkey. Arch Phytopathol Plant Prot 44:78–84CrossRefGoogle Scholar
  15. Erper I, Karaca GH, Türkkan M, Ozkoc I (2006) Characterization and pathogenicity of Rhizoctonia spp. from onion in Amasya, Turkey. J Phytopathol 154:75–79CrossRefGoogle Scholar
  16. Erper I, Türkkan M, Atanasova L, Druzhinina IS, Karaca GH, Cebi-Kilicoglu M (2013) Integrated assessment of the mycoparasitic and phytostimulating properties of Trichoderma strains against Rhizoctonia solani. Bulg J Agric Sci 19:737–743Google Scholar
  17. Huang F, Wang JM, Xu YM (2008) Primary study on mechanism of borate inhibiting spore germination of Botrytis cinerea. Acta Phytopathol Sinica 38:370–376Google Scholar
  18. Ishii T, Matsunaga T, Iwai H, Satoh S, Taoshita J (2002) Germanium does not substitute for boron in cross-linking of rhamnogalacturonan II in pumpkin cell walls. Plant Physiol 130:1967–1973CrossRefGoogle Scholar
  19. Kataria HR, Gisi U (1996) Chemical control of Rhizoctonia species. In: Sneh BS, Jabaji-Hare S, Neate G (eds) In Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Dst. Kluwer Academic Publishers, Amsterdam, pp 537–547Google Scholar
  20. Kuramae EE, Buzeto AL, Ciampi MB, Suoza NL (2003) Identification of Rhizoctonia solani AG 1‑IB in lettuce, AG 4 HG-I in tomato and melon and AG 4 HG-III in broccoli and spinach in Brazil. Eur J Plant Pathol 109:391–395CrossRefGoogle Scholar
  21. Li Y, Yang Z, Bi Y, Zhang J, Di W (2012) Antifungal effect of borates against Fusarium sulphureum on potato tubers and its possible mechanisms of action. Postharv Biol Technol 74:55–61CrossRefGoogle Scholar
  22. Lieten P (2002) Boron deficiency of strawberries grown in substrate culture. Acta Hortic 567:451–454CrossRefGoogle Scholar
  23. Mecteau MR, Arul J, Tweddell RJ (2002) Effect of organic and inorganic salts on the growth and development of Fusarium sambucinum, a causal agent of potato dry rot. Mycol Res 106:688–696CrossRefGoogle Scholar
  24. Mills AAS, Platt HW, Hurta RAR (2004) Effect of salt compounds on mycelial growth, sporulation and spore germination of various potato pathogens. Postharvest Biol Technol 34:341–350CrossRefGoogle Scholar
  25. Ogoshi A (1987) Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Ann Rev Phytopathol 25:125–143CrossRefGoogle Scholar
  26. Özer G, Bayraktar H (2015) Characterization and sensitivity to fungicides of Rhizoctonia spp. recovered from potato plants in Bolu, Turkey. J Phytopathol 163(1):11–18CrossRefGoogle Scholar
  27. Pourmahdi A, Taheri P (2015) Genetic Diversity of Thanatephorus cucumeris Infecting Tomato in Iran. J Phytopathol 163:19–32CrossRefGoogle Scholar
  28. Qin G, Tian S, Chan Z, Li B (2007) Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum. Mol Cell Proteomics 6:425–438CrossRefGoogle Scholar
  29. Qin GZ, Zong YY, Chen QL, Hua DL, Tian SP (2010) Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Int J Food Microbiol 138:145–150CrossRefGoogle Scholar
  30. Ruppel EG (1985) Susceptibility of rotation crops to a root rot isolate of Rhizoctonia solani from sugar beet and survival of the pathogen in crop residuals. Plant Dis 69:871–873CrossRefGoogle Scholar
  31. Di Salvatore M, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosph 73(9):1461–1464CrossRefGoogle Scholar
  32. Sharon M, Kuninaga S, Hyakumachi M, Naito S, Sneh B (2008) Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycosci 49:93–114CrossRefGoogle Scholar
  33. Shi X, Li B, Qin G, Tian S (2012) Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biol Technol 67:138–143CrossRefGoogle Scholar
  34. Shi X‑Q, Li B‑Q, Qin G‑Z, Tian S‑P (2011) Antifungal activity and possible mode of action of borate against Colletotrichum gloeosporioides on mango. Plant Dis 95:63–69CrossRefGoogle Scholar
  35. Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. APS Press, St Paul, p 133Google Scholar
  36. Strong PL (2001) Boric acid and inorganic borate pesticides, 2nd edn. Handbook pesticide toxicol, pp 1429–1437Google Scholar
  37. Thomidis T, Exadaktylou E (2010) Effect of boron on the development of brown rot (Monilinia laxa) on peaches. Crop Prot 6:572–576CrossRefGoogle Scholar
  38. Thompson DP (1989) Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81:151–153CrossRefGoogle Scholar
  39. Türkkan M, Erper I (2015) Inhibitory influence of organic and inorganic sodium salts and synthetic fungicides against bean root rot pathogens. Gesunde Pflanzen 67:83–94CrossRefGoogle Scholar
  40. Yilmaz O (2007) Boron in Turkey: between myth and reality. Insight Turk 9(4):37–43Google Scholar
  41. Ziv O, Zitter TA (1992) Effects of bicarbonate and film-forming polymers on cucurbit foliar diseases. Plant Dis 76:513–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Protection, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
  2. 2.Department of Plant Protection, Faculty of AgricultureOrdu UniversityOrduTurkey

Personalised recommendations