Advertisement

Gesunde Pflanzen

, Volume 70, Issue 4, pp 217–224 | Cite as

Screening for Antifungal Potential of Plant Extracts of Fifteen Plant Species Against Four Pathogenic Fungi Species

  • Ragab Abdelmohsen El-Mergawi
  • Gamal Ibrahim
  • Abdulrahman Al-Humaid
Original Article
  • 68 Downloads

Abstract

The antifungal activity of fifteen wild plant species grown in the Al-Qassim region, Saudi Arabia, was investigated against the fungi species Fusarium solani, Botrytis cinerea, Alternaria alternata and Stemphylium botryosum at concentrations of 10, 20, 40 and 80 g/L. The inhibitory effect of test extracts varied among examined fungi, and Fusarium solani exhibited the least sensitivity compared to other fungi species. Antifungal activity of the tested extracts was proportional to the applied dose. Extracts of Lactuca virosa, Neurada procumbens, Ochradenus baccatus and Cyperus conglomerates showed relatively low inhibition effects on the fungi species. The most effective plants were Pulicaria undulata, Artemisia monosperma, Prosopis juliflora, Withania somnifera and Rumex vesicarius. At 80 g/L, extracts of these plant species reduced mycelial growth of Botrytis cinerea by 16.5–32.2%, of Fusarium solani by 11.1–27.9%, of Alternaria alternaae by 26.9–63.5% and of Stemphylium botryosum by 22–40%. The methanolic extract of the most effective plant species was further fractioned with hexane, methylene chloride and ethyl acetate. The obtained fractions varied in their effects on mycelial growth of the four tested fungi. Using the same fraction resulted in different inhibition effects on mycelial growth of all tested fungi. The antifungal activity of each crude extract tended to be distributed among its three fractions, probably because the bioactive components were also distributed among the fractions.

Keywords

Native plants Antifungal activity Plant extracts Allelopathy Natural fungicide 

Screening auf das antimykotische Potenzial von Pflanzenextrakten aus 15 Pflanzenarten gegenüber 4 pathogenen Pilzarten

Zusammenfassung

Die antimykotische Aktivität von 15 Wildpflanzenarten, die in der Region Al-Qassim, Saudi-Arabien, angebaut wurden, gegen die Pilzarten Fusarium solani, Botrytis cinerea, Alternaria alternata und Stemphylium botryosum wurde in Konzentrationen von 10, 20, 40 und 80 g/l untersucht. Die hemmende Wirkung der Testextrakte auf die untersuchten Pilze war unterschiedlich, und Fusarium solani zeigte im Vergleich zu anderen Pilzen die geringste Empfindlichkeit. Die antimykotische Aktivität der getesteten Extrakte war proportional zur applizierten Dosis. Extrakte aus Lactuca virosa, Neurada procumbens, Ochradenus baccatus und Cyperus conglomerates zeigten relativ geringe Hemmwirkungen auf die Pilzarten. Die wirksamsten Pflanzen waren Pulicaria undulata, Artemisia monosperma, Prosopis juliflora, Withania somnifera und Rumex vesicarius. Bei 80 g/l reduzierten die Extrakte dieser Pflanzenarten das myzeliale Wachstum von Botrytis cinerea um 16,5–32,2 %, von Fusarium solani um 11,1–27,9 %, von Alternaria alternaae um 26,9–63,5 % und von Stemphylium botryosum um 22–40 %. Der methanolische Extrakt der effektivsten Pflanzenarten wurde mit Hexan, Dichlormethan und Ethylacetat weiter fraktioniert. Die erhaltenen Fraktionen variierten in ihren Auswirkungen auf das Myzelwachstum der 4 getesteten Pilze. Unter Verwendung derselben Fraktion war die Hemmwirkung auf die 4 getesteten Pilze unterschiedlich. Die antimykotische Aktivität jedes Rohextrakts verteilte sich tendenziell auf seine 3 Fraktionen – wahrscheinlich, weil auch die bioaktiven Komponenten auf die Fraktionen aufgeteilt wurden.

Schlüsselwörter

Einheimische Pflanzen Antimykotische Aktivität Pflanzenextrakte Allelopathie Natürliches Fungizid 

Notes

Acknowledgements

We thank the Promising Research Centre in Biological Control and Agricultural Information (BCARC), Qassim University, Saudi Arabia, for the financial support.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Al-Humaid A, El-Mergawi RA (2014) Herbicidal activities of seven native plants on the germination and growth of Phalaris minor, Echinochloa crusgalli, Portulaca oleracea and Lactuca sativa. J Agric Sci Technol 4:843–852Google Scholar
  2. Aman M, Rai VR (2015) Antifungal activity of fungicides and plant extracts against yellow sigatoka disease causing Mycosphaerella musicola. Curr Res Environ Appl Mycol 5(3):277–284CrossRefGoogle Scholar
  3. Amin M, Javaid A, Athar MM (2012) Prospects of using fruit and bark extracts of Eucalyptus citriodora for control of Ascochyta rabiei, the causal organism of chickpea blight. Mycopathologia 10:51–55Google Scholar
  4. Baratelli TG, Gomes ACC, Wessjohann LA, Kuster RM, Simas NK (2012) Phytochemical and allelopathic studies of Terminalia catappa L. (Combretaceae). Biochem Syst Ecol 41:119–125CrossRefGoogle Scholar
  5. Barnett HL, Hunter BB (1972) Illustrated genera of imperfect fungi, 3rd edn. Burgess Publishing Company, Third editionGoogle Scholar
  6. Bergeron C, Marston A, Hakizamungu E, Hostettmenn K (1995) Antifungal constituents of Chenopodium procerum. Int J Pharmacogn 33:115–119CrossRefGoogle Scholar
  7. Brent KJ, Hollomon DW (1998) Fungicide resistance: the assessment of risk. FRAC, Global Crop Protection Federation, Brussels (48 PP)Google Scholar
  8. Carvalho FP (2006) Agriculture, pesticides, food security and food safety. Environ Sci Policy 9(7–8):685–692CrossRefGoogle Scholar
  9. Diana M, Sales C, Costa HBH, Fernandes PMB, Meira DD, Ventura JA (2016) Antifungal activity of plant extracts with potential to control plant pathogens in Pineapple. Asian Pac J Trop Biomed 6(1):26–31CrossRefGoogle Scholar
  10. Einhellig F (1995) Allelopathy: current status and future goals. In: Dakshini KMM, Inderjit A, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington, DC, pp 1–24Google Scholar
  11. El-Hawary SA, Sokkar NM, Ali ZY, Yehia MM (2011) A profile of bioactive compounds of Rumex vesicarius L. Food Sci 76(8):C1195–C1202CrossRefGoogle Scholar
  12. FAO (1981) A review of pest, diseases and weed complexes in high yielding varieties in Asia and Pacific. FAO Regulation office for Asia and the pacific, BangkokGoogle Scholar
  13. Gilman JC (1957) A manual of soil fungi, 2nd edn. The Iowa State University Press, AmesGoogle Scholar
  14. Grainge M, Ahmed S (1988) Handbook of plants with pest control properties. John Wiley & Sons, New YorkGoogle Scholar
  15. Hadizadeh I, Peivastegan B, Kolahi M (2009) Antifungal activity of nettle (Urtica dioica L.), colocynth (Citrullus colocynthis L. schrad), oleander (Nerium oleander L.) and konar (Ziziphus spinachristi L.) extracts on plants pathogenic fungi. Pakistan J Biol Sci 12:58–63CrossRefGoogle Scholar
  16. Hussein SR, Marzouk MM, Soltan MM, Ahmed EK, Said MM, Hamed AR (2016) Phenolic constituents of Pulicaria undulata (L.) C.A. Mey. Sub sp. undulata (Asteraceae): antioxidant protective effects and chemo systematic significances. J Food Drug Anal 25(3):333–339PubMedGoogle Scholar
  17. Ishii H (2006) Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Jpn Agric Res Q 40:205–211CrossRefGoogle Scholar
  18. Javaid A, Qudsia H, Shoaib A (2017) Bioassays guided fractionation of Sennaoccidentalis for identification of natural antifungal constituents against Macrophomina Phaseolina. Planta Daninha 35:1–8Google Scholar
  19. Kanitah BI (2011) Ecophysiological and phytochemical changes of some wild plants in Saudi Arabia. Bot Dept Fac Sci, King Saud University, (MSc Thesis)Google Scholar
  20. Manilal A, Idhayadhulla A (2014) Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F). Asian Pac J Trop Biomed 4(1):25–29CrossRefGoogle Scholar
  21. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393CrossRefGoogle Scholar
  22. Nakano H, Fujii Y, Yamada K, Kosemura S, Yamamura S, Hasegawa K, Suzuki T (2002) Isolation and identification of plant inhibitors as candidate (s) for allelopathic substance(s) from aqueous leachate from mesqite (Prosopis juliflora (Sw.) DC.) leaves. Plant Growth Regul 37:113–117CrossRefGoogle Scholar
  23. Omezzinea F, Ladharia A, Rineza A, Haoualab R (2011) Potent herbicidal activity of Inula crithmoïdes L. Sci Hortic 130:853–861CrossRefGoogle Scholar
  24. Omidbeygi M, Barzegar M, Hamidi Z, Nafhdibadi H (2007) Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 18:1518–1523CrossRefGoogle Scholar
  25. Punnagai K, Chellathi DD, Karthik VP, Josephine IG (2016) Evaluation of antifungal activity of ethanolic extract of Andrographis echioides—an In vitro study. Int J Pharm Biol Sci 7(4):6–10Google Scholar
  26. Sato J, Goto K, Nanjo F, Kawai S, Murata K (2000) Antifungal activity of plant extracts against Arthirnium sacchari and Chaetonium funicola. J Biosci Bioeng 90:442–446CrossRefGoogle Scholar
  27. Sukumar D, Anandhi B (2014) Antibacterial Studies on the Isolates of Radermachera xylocarpa. Int J Sci Res 3(4):63–65Google Scholar
  28. Teerarak M, Laosinwattana C, Charoenying P (2010) Evaluation of allelopathic decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresour Technol 101:5677–5684CrossRefGoogle Scholar
  29. Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646CrossRefGoogle Scholar
  30. Wu H, Pratley J, Lemerle D, Haig T, An M (2002) Screening methods for the evaluation of crop allelopathic potential. Bot Rev 67:403–415CrossRefGoogle Scholar
  31. Xuan TD, Yuichi O, Junko C, Eiji T, Hiroyuki T, Mitsuhiro M, Khanh TD, Hong NH (2003) Kava root (piper methysticum L.) as a potential natural herbicide and fungicide. Crop Prot 22:873–881CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Ragab Abdelmohsen El-Mergawi
    • 1
    • 2
  • Gamal Ibrahim
    • 1
  • Abdulrahman Al-Humaid
    • 1
  1. 1.Department of Plant Production and ProtectionQassim UniversityBuhridahSaudi Arabia
  2. 2.Botany DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations