Advertisement

Gesunde Pflanzen

, Volume 71, Issue 1, pp 25–35 | Cite as

Exogenous Application of Salicylic Acid and Glycine Betaine as Tools to Enhance Biomass and Tolerance of Potato Cultivars

  • Mouhamad AlhoshanEmail author
  • Morteza Zahedi
  • Ali Akbar Ramin
  • Mohammad R. Sabzalian
Original Article
  • 32 Downloads

Abstract

This pot experiment was aimed at characterization of agro-physiological responses of potato to water deficit and exogenously application of salicylic acid (SA) and glycine betaine (GB). Four potato cultivars, Spirit, Born, Arinda and Banba, were exposed to two irrigation regimes (30 and 60% depletion of available soil water) and two levels of both SA (0.5 and 1.0 mM) and GB application (1.0 and 2.0 mM) in addition to the control (0.0 mM SA and GB). Activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), total antioxidant capacity (TAC), ion leakage (IL), fluorescence chlorophyll (Fv/Fm), chlorophyll pigments, root dry mass (RDM) and plant dry mass (PDM) were measured. Water deficiency resulted in significant effects on all characteristics. Antioxidant enzymes and IL increased, but the other characteristics decreased significantly with water deficit. Tolerant cultivars (Spirit and Born) revealed higher activity of SOD enzyme, chlorophyll content, PDM and lower IL than non-tolerant cultivars (Arinda and Banba). This investigation has been able to provide evidence that SA and GB affected antioxidant enzymes and increased chlorophyll pigments and PDM. The range of the increases seemed greater when potato cultivars were grown under water deficit circumstances. PDM increased by increasing SA and GB levels. This led to the supposition that injurious effects on potato cultivars due to water deficit could be relieved by SA and GB.

Keywords

Water deficit Salicylic acid Glycine betaine Antioxidant enzymes Plant dry mass 

Exogene Anwendung von Salizylsäure und Glycin-Betain als Tools zur Förderung der Biomasse und der Toleranz von Kartoffelsorten

Zusammenfassung

Ziel des Topfversuchs war die Charakterisierung der agrophysiologischen Reaktionen von Kartoffeln auf Wassermangel und auf die exogene Anwendung von Salizylsäure (SA) und Glycin-Betain (GB). Vier Sorten, Spirit, Born, Arinda und Banba, waren 2 Bewässerungssystemen (30- und 60 %ige Reduktion des verfügbaren Bodenwassers) und 2 SA- (0,5 und 1,0 mM) und GB-Anwendungsregimes (1,0 und 2,0 mM) ausgesetzt; eine Kontrolle (0,0 mM SA und GB) diente als Vergleich. Gemessen wurden die Aktivitäten der Ascorbatperoxidase (APX) und der Superoxiddismutase (SOD) sowie die Antioxidationskapazität insgesamt („total antioxidant capacity“, TAC), der Elektrolytverlust („ion leakage“, IL), die Chlorophyllfluoreszenz (Fv/Fm), die Chlorophyllpigmente, die Wurzel- („root dry mass“, RDM) und die Pflanzentrockenmasse („plant dry mass“, PDM). Alle Charakteristika wurden durch Wassermangel signifikant beeinflusst: Die antioxidativen Enzyme und der Elektrolytverlust stiegen; die anderen Charakteristika wurden durch den Wassermangel signifikant reduziert. Tolerante Sorten (Spirit und Born) zeigten eine höhere SOD-Aktivität, einen höheren Chlorophyllgehalt, eine höhere PDM und einen niedrigeren Elektrolytverlust als nichttolerante Sorten (Arinda und Banba). Die Untersuchung konnte zeigen, dass SA und GB antioxidative Enzyme beeinflussten und den Chlorophyllgehalt sowie die PDM erhöhten. Diese Erhöhung schien größer zu sein, wenn Kartoffelsorten unter Wassermangelbedingungen angebaut wurden. Die PDM stieg bei höheren SA- und GB-Konzentrationen an. Dies führte zu der Annahme, dass sich wassermangelbedingte schädigende Effekte durch SA und GB reduzieren lassen könnten.

Schlüsselwörter

Wassermangel Salizylsäure Glycin-Betain Antioxidative Enzyme Pflanzentrockenmasse 

Notes

Acknowledgements

This work was supported by the Isfahan University of Technology, Faculty of Agriculture, and Department of Horticulture Science.

Conflict of interest

M. Alhoshan, M. Zahedi, A.A. Ramin and M.R. Sabzalian declare that they have no competing interests.

References

  1. Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought deficit in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34CrossRefGoogle Scholar
  2. Ahmad R, Kim M, Back K, Kim H, Lee H, Kwon S, Murata N, Chung W, Kwak S (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687–698.  https://doi.org/10.1007/s00299-007-0479-4 CrossRefGoogle Scholar
  3. Allard F, Houde M, Krol M, Ivanov A, Huner N, Sarhan F (1998) Betaine improves freezing tolerance in wheat. Plant Cell Physiol 39:1194–1202CrossRefGoogle Scholar
  4. Anosheh HP, Emam Y, Ashraf M, Foolad MR (2012) Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv Stud Biol 4:501–520Google Scholar
  5. Askari E, Ehsanzadeh P (2015a) Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiol Plant 37:1–14.  https://doi.org/10.1007/s11738-014-1762-y CrossRefGoogle Scholar
  6. Askari E, Ehsanzadeh P (2015b) Effectiveness of exogenous salicylic acid on root and shoot growth attributes, productivity, and water use efficiency of water-deprived fennel genotypes. Hortic Environ Biotechnol 56:687–696.  https://doi.org/10.1007/s13580-015-0038-9 CrossRefGoogle Scholar
  7. Bettaieb I, Knioua S, Hamrouni I, Limam F, Marzouk B (2011) Water deficit impact on fatty acid and essential oil composition and antioxidant activities of cumin (Cuminum cyminum L.) aerial parts. J Agric Food Chem 59:328–334.  https://doi.org/10.1021/jf1037618 CrossRefGoogle Scholar
  8. Blum A, Sullivan CY, Nguyen HT (1997) The effect of plant size on wheat response to agents of drought stress II. Water deficit heat and ABA. Aust J Plant Physiol 24:43–48Google Scholar
  9. Boguszewska D, Grudkowska M, Zagdańska B (2010) Drought-responsive antioxidant enzymes in potato (solanum tuberosum L.). Potato Res 53:373–382.  https://doi.org/10.1007/s11540-010-9178-6 CrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  11. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Leben Wissen Technol 28:25–30CrossRefGoogle Scholar
  12. Cervilla LM, Blasco B, Rios JJ, Romero L, Ruiz J (2007) Oxidative deficit and antioxidants in tomato (solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756.  https://doi.org/10.1093/aob/mcm156 CrossRefGoogle Scholar
  13. Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496CrossRefGoogle Scholar
  14. Cheng YJ, Deng XP, Kwak SS, Chen W, Eneji AE (2013) Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Bot Stud 54:1–9CrossRefGoogle Scholar
  15. Deblonde PMK, Ledent JF (2001) Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur J Agron 14:31–41CrossRefGoogle Scholar
  16. Finkel T, Holbrook NJ (2000) Oxidants, oxidative deficit and the biology of ageing. Nature 408:239–247CrossRefGoogle Scholar
  17. Fischer RA, Wood T (1979) Drought resistance in spring wheat cultivars ІІІ. Yield association with morphological traits. Aust J Agric Res 30:1001–1020CrossRefGoogle Scholar
  18. Genard H, Saos JLE, Hillard J, Tremolieres A, Boucaud J (1991) Effect of salinity on lipid composition, glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima. Plant Physiol Biochem 29:421–427Google Scholar
  19. Gholami-Zali A, Ehsanzadeh P (2018) Exogenously applied proline as a tool to enhance water use efficiency: case of fennel. Agric Water Manag 197:138–146.  https://doi.org/10.1016/j.indcrop.2017.10.020 CrossRefGoogle Scholar
  20. Giannopolitis CN, Ries SK (1977) Superoxide dismutase: occurrence in higher plants. Plant Physiol 59:309–314CrossRefGoogle Scholar
  21. Halliwell B (1999) Antioxidant defense mechanism from the beginning to the end. Free Radic Res 31:261–272CrossRefGoogle Scholar
  22. Harris PM (1992) The potato crop: the scientific basis for improvement. Chapman & Hall, LondonCrossRefGoogle Scholar
  23. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25CrossRefGoogle Scholar
  24. Hojati M, Modarres-Sanavy SAM, Karimi M, Ghanati F (2011) Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit deficit. Acta Physiol Plant 33:105–112CrossRefGoogle Scholar
  25. Hue SM, Boyce AN, Somasundram C (2012) Antioxidant activity, phenolic and flavonoid contents in the leaves of different varieties of sweet potato (Ipomoea batatas). Aust J Crop Sci 6:375–380Google Scholar
  26. Janda T, Gondor OK, Yordanova R, Szalai G, Pal M (2014) Salicylic acid and photosynthesis, signaling and effects. Acta Physiol Plant 36:2537–2546.  https://doi.org/10.1007/s11738-014-1620-y CrossRefGoogle Scholar
  27. Juan M, Rivero RM, Romero L, Ruiz JM (2005) Evaluation of some nutritional and biochemical indicators in selecting salt resistant tomato cultivars. Environ Exp Bot 54:193–201CrossRefGoogle Scholar
  28. Khayatnezhad M, Zaeifizadeh M, Gholamin R (2011) Effect of end season drought stress on chlorophyll fluorescence and content of antioxidant enzyme superoxide dismutase enzyme (SOD) in susceptible and tolerant genotypes of durum wheat. Afr J Agric Res 30:6397–6406.  https://doi.org/10.5897/AJAR11.250 Google Scholar
  29. Lawlor DW (2002) Limitation to photosynthesis in water-deficited leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885CrossRefGoogle Scholar
  30. Levy D, Coleman WK, Veilleux RE (2013) Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. Am J Potato Res 90:186–206.  https://doi.org/10.1007/s12230-012-9291-y CrossRefGoogle Scholar
  31. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382CrossRefGoogle Scholar
  32. Lin KH, Tsou CC, Hwang SY, Chen LFO, Lo HF (2006) Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato. J Plant Physiol 163:750–760CrossRefGoogle Scholar
  33. LiXin Z, ShengXiu L, ZongSuo L (2009) Differential plant growth and osmotic efects of two maize (Zea mays L.) cultivars to exogenous glycinebetaine application under drought stress. Plant Growth Regul 58:297–305CrossRefGoogle Scholar
  34. Lu YY, Deng XP, Kwak SS (2010) Over expression of CuZn superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in transgenic sweet potato enhances tolerance and recovery from drought deficit. Afr J Biotechnol 9:8378–8391.  https://doi.org/10.5897/AJB10.926 Google Scholar
  35. Lutts S, Kinet JM, Bouharmon J (1996) NaCl induced senescence in leave of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398CrossRefGoogle Scholar
  36. Mensah JK, Obadoni BO, Eruotor PG, Onome-Irieguna F (2006) Simulated flooding and drought effects on germination, growth and yield parameters of sesame (Sesomum indicum L.). Afr J Biotechnol 13:1249–1253Google Scholar
  37. Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498.  https://doi.org/10.1016/j.tplants.2004.08.009 CrossRefGoogle Scholar
  38. Monneveux P, Ramirez DA, Awais-Khan M, Raymundo RM, Loayza H, Quiroz R (2014) Drought and heat tolerance evaluation in potato (Solanum tuberosum L.). Potato Res 57:225–247.  https://doi.org/10.1007/s11540-014-9263-3 CrossRefGoogle Scholar
  39. Morgan PW (1990) Effects of abiotic stresses on plant hormone systems. In: Stress responses in plants: adaptation and acclimation mechanisms. John Wiley & Sons, New YorkGoogle Scholar
  40. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  41. Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit deficit: association with oxidative deficit and antioxidants. Environ Exp Bot 58:106–113CrossRefGoogle Scholar
  42. Placide R, Shimelis H, Laing M, Gahakwa D (2013) Physiological mechanisms and conventional breeding of sweet potato (Ipomoea batatas L. Lam.) to drought-tolerance. Afr J Agric Res 8:1837–1846.  https://doi.org/10.5897/AJAR12.1795 CrossRefGoogle Scholar
  43. Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine syntesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486CrossRefGoogle Scholar
  44. Rapacz M, Kosćielniak J, Jurczyk B, Adamska A, Wojcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). J Agron Crop Sci 196:9–19CrossRefGoogle Scholar
  45. Rhodes D, Hanson A (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384CrossRefGoogle Scholar
  46. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338CrossRefGoogle Scholar
  47. Sairam RK, Saxena DC (2000) Oxidative deficit and antioxidants in wheat genotypes: possible mechanism of water deficit tolerance. J Agron Crop Sci 184:55–61CrossRefGoogle Scholar
  48. Sarani M, Namrudi M, Hashemi SM, Raoofi MM (2014) The effect of drought stress on chlorophyll content, root growth, glucosinolate and proline in crop plants. Inter J Farming Allied Sci 9:994–997Google Scholar
  49. Shi S, Fan M, Iwama K, Li F, Zhang Z, Jia L (2015) Physiological basis of drought tolerance in potato grown under long term water deficiency. Int J Plant Prod 9:305–320Google Scholar
  50. Singh J, Kaur L (2009) Advances in potato chemistry and technology. In: Bradshaw JE, Ramsay G (eds) Potato origin and production, vol 67. Academic Press, Cambridge, pp 1–26Google Scholar
  51. Slama I, Rabet RM, Ksouri R, Talbi O, Debez A, Abdelly C (2015) Water deficit stress applied only or combined with salinity affects physiological parameters and antioxidant capacity in Sesuvium portulacastrum. Flora 213:69–76.  https://doi.org/10.1016/j.flora.2015.04.004 CrossRefGoogle Scholar
  52. Szalai G, Krantev A, Yordanova R, Popova LP, Janda T (2013) Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk J Bot 37:708–714Google Scholar
  53. Tas S, Tas B (2007) Some physiological responses of drought deficit in wheat genotypes with different ploidity in Turkiye. World J Agric Sci 3:178–183Google Scholar
  54. Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Mouhamad Alhoshan
    • 1
    Email author
  • Morteza Zahedi
    • 2
  • Ali Akbar Ramin
    • 1
  • Mohammad R. Sabzalian
    • 2
  1. 1.Department of Horticulture, College of AgricultureIsfahan University of Technology (IUT)IsfahanIran
  2. 2.Department of Agronomy and Plant Breeding, College of AgricultureIsfahan University of Technology (IUT)IsfahanIran

Personalised recommendations