Photosynthetic performance, height growth, and dominance of naturally regenerated sessile oak (Quercus petraea [Mattuschka] Liebl.) seedlings in small-scale canopy openings of varying sizes

  • Tobias Modrow
  • Christian Kuehne
  • Somidh Saha
  • Jürgen Bauhus
  • Patrick L. PyttelEmail author
Original Paper


Small-scale harvesting methods as practised in close-to-nature forestry may disadvantage the regeneration of more light-demanding tree species such as most oaks and thus cause regeneration failure. Conducted in south-western Germany, this study examined photosynthetic performance and height growth of naturally regenerated 7-year-old sessile oak (Quercus petraea [Mattuschka] Liebl.) seedlings growing in artificially established and fenced canopy openings varying from 0.05 to 0.2 ha in size. We quantified the influence of solar radiation and competing vegetation within gaps on total height, height increment, and dominance of oak seedlings. Measurements were taken on plots systematically established along a north–south transect through gaps. Plot-level solar radiation levels within canopy openings quantified using the total site factor (TSF) were between 20% at southerly positions within small openings and up to 75% of open-field conditions at the centre of larger gaps. Photosynthetic performance, total height, and shoot length of the studied oak seedlings increased with increasing solar radiation. However, height increment and total height did not improve substantially when radiation levels increased from 20 to 50% TSF. Yet, highest levels of oak dominance, where oaks were the tallest individual at a plot, were found around 50% of TSF. Under the conditions at our research site, canopy openings of at least 0.2 ha in size appear necessary to successfully establish natural oak regeneration. Irrespective of gap size, the competition to oaks by woody species needs to be controlled to reduce the risk of regeneration failure.


Sessile oak Natural regeneration Forest gap Light availability Interspecific competition 



The authors thank Alexander Fichtner and Karl-Heinz Lieber for their cooperation and support in this research effort. We also thank July Van Cleve, Renate Nitschke, Germar Csapek, and all student helpers involved in this project for their assistance in collecting and preparing the data. The study was in part funded by the Forest Research Institute of Baden-Württemberg, the Ministry of Rural Areas and Consumer Protection Baden-Württemberg, and the municipality Obersulm.


  1. Ammer C, Dingel C (1997) Untersuchungen über den Einfluss starker Weichlaubholzkonkurrenz auf das Wachstum und die Qualität junger Stieleichen. Forstwiss Centralbl 116:346–358CrossRefGoogle Scholar
  2. Annighöfer P, Beckschäfer P, Vor T, Ammer C (2015) Regeneration patterns of European oak species (Quercus petraea (Matt.) Liebl., Quercus robur L.) in dependence of environment and neighbourhood. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balandier P, Marquier A, Casella E, Kiewitt A, Coll L, Wehrlen L, Harmer R (2012) Architecture, cover and light interception by bramble (Rubus fruticosus): a common understorey weed in temperate forests. Forestry 86:39–46CrossRefGoogle Scholar
  4. Bauhus J, Puettmann KJ, Kühne C (2013) Close-to-nature forest management in Europe: Does it support complexity and adaptability of forest ecosystems? In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. The Earthscan forest Library, Routledge, pp 187–213Google Scholar
  5. Bazzaz FA, Carlson RW (1982) Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia 54:313–316. CrossRefPubMedGoogle Scholar
  6. Bolte A, Ammer C, Lóf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. CrossRefGoogle Scholar
  7. Brezina I, Dobrovolny L (2011) Natural regeneration of sessile oak under different light conditions. J For Sci 57:359–368CrossRefGoogle Scholar
  8. Bruciamacchie M, Grandjean G, Jacobee F (1994) Installation de régénérations feuillues dans de petites trouées en peuplement irréguliers. Revue Forestière Francaise 46:639–653CrossRefGoogle Scholar
  9. Bundesamt für Kartographie und Geodäsie (BKG) (2016) Accessed 10 Nov 2016
  10. Burschel P, Huss J (1997) Grundriss des Waldbaus: ein Leitfaden für Studium und Praxis. Parey, BerlinGoogle Scholar
  11. Centritto M, Magnani F, Lee HSJ, Jarvis PG (1999) Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations. New Phytol 141:141–153. CrossRefGoogle Scholar
  12. Deutscher Wetterdienst (DWD) (2016) Accessed 12 Sept 2016
  13. Diaci J (2006) Nature-based silviculture in Slovenia: origins, development and future trends. In: Diaci J, Kotar M, Schuetz JP, Matic S, Piussi P (eds) Nature-based forestry in Central Europe. University Ljubljana, Ljubljana, pp 119–131Google Scholar
  14. Diaci J, Thormann JJ (2002) Ein Vergleich verschiedener Lichtmessmethoden in Buchen-naturwäldern Sloweniens aus verjüngungsökologischer Sicht. Schweiz Z Forstw 153:39–50. CrossRefGoogle Scholar
  15. Diaci J, Gyoerek N, Gliha J, Nagel TA (2008) Response of Quercus robur L. seedlings to north-south asymmetry of light within gaps in floodplain forests of Slovenia. Ann For Sci 65:105. CrossRefGoogle Scholar
  16. Dobrowolska D (2008) Effect of stand density on oak regeneration in flood plain forests in Lower Silesia, Poland. Forestry 81:511–523. CrossRefGoogle Scholar
  17. Dohrenbusch A (1996) Untersuchungen zur natürlichen Verjüngung von Traubeneichen-Hainbuchen-Mischbeständen. Forst und Holz 51:331–339Google Scholar
  18. Ellenberg H (2009) Vegetation ecology of Central Europe. Cambridge University Press, CambridgeGoogle Scholar
  19. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6. Ausgabe. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  20. Frischbier N, Profft I, Arenhövel W (2010) Die Ausweisung klimawandelangepasster Bestandeszieltypen für Thüringen. Forst und Holz 65:28–35Google Scholar
  21. Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63–92Google Scholar
  22. Götmark F, Schott KM, Jensen AM (2011) Factors influencing presence–absence of oak (Quercus spp.) seedlings after conservation-oriented partial cutting of high forests in Sweden. Scand J For Res 26:136–145. CrossRefGoogle Scholar
  23. Grime JP (1966) Shade avoidance and shade tolerance in flowering plants. In: Bainbridge RG, Evans GC, Rackham O (eds) Light as an ecological factor. Blackwell, Oxford, pp 187–207Google Scholar
  24. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207. CrossRefGoogle Scholar
  25. Harmer R, Morgan G (2007) Development of Quercus robur advance regeneration following canopy reduction in an oak woodland. Forestry 80:137–149. CrossRefGoogle Scholar
  26. Harmer R, Boswell R, Robertson M (2005) Survival and growth of tree seedlings in relation to changes in the ground flora during natural regeneration of an oak shelterwood. Forestry 78:21–32. CrossRefGoogle Scholar
  27. Hölscher D (2004) Leaf traits and photosynthetic parameters of saplings and adult trees of co-existing species in a temperate broad-leaved forest. Basic Appl Ecol 5:163–172. CrossRefGoogle Scholar
  28. IBM Corporation (2016) IBM SPSS statistics version 24. Core system user’s guide. Armonk, NYGoogle Scholar
  29. Jacobee F (2004) Le renouvellement des chênes en futaie irrégulière. Forêt Entrep 155:45–49Google Scholar
  30. Jensen AM, Löf M (2017) Effects of interspecific competition from surrounding vegetation on mortality, growth and stem development in young oaks (Quercus robur). For Ecol Manag 392:176–183. CrossRefGoogle Scholar
  31. Jensen AM, Götmark F, Löf M (2012) Shrubs protect oak seedlings against ungulate browsing in temperate broadleaved forests of conservation interest: a field experiment. For Ecol Manag 266:187–193. CrossRefGoogle Scholar
  32. Kazda M, Wagner C, Pichler M, Hager H (1998) Potentielle Lichtausnützung von Quercus petraea, Fagus sylvatica und Acer pseudoplatanus im Jahr des Voranbaus. Allg Forst Jagdztg 169:157–163Google Scholar
  33. Kazda M, Salzer J, Schmid I, Von Wrangell Ph (2004) Importance of mineral nutrition for photosynthesis and growth of Quercus petraea, Fagus sylvatica and Acer pseudoplatanus planted under Norway Spruce canopy. Plant Soil 264:25–34. CrossRefGoogle Scholar
  34. Kelly DL (2002) The regeneration of Quercus petraea (sessile oak) in southwest Ireland: a 25-year experimental study. For Ecol Manag 166:207–226. CrossRefGoogle Scholar
  35. Kuehne C, Nosko P, Horwath T, Bauhus J (2014) A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra L.) and native hardwood tree species in southwestern Germany. Tree Physiol 34:184–193. CrossRefPubMedGoogle Scholar
  36. Kühne C, Jacob A, Gräf M (2014) The practice of establishing and tending oak (Quercus petraea [Matt.] Liebl., Q. robur L.) stands: an interview-based study in the eastern Upper Rhine Plain, Germany. Forstarchiv 85:179–187Google Scholar
  37. Kunz J, Löffler G, Bauhus J (2018) Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. For Ecol Manag 414:15–27. CrossRefGoogle Scholar
  38. Kuptz D, Grams TEE, Günter S (2010) Light acclimation of four native tree species in felling gaps within a tropical mountain rainforest. Trees 24:117–127. CrossRefGoogle Scholar
  39. Landeskompetenzzentrum Forst Eberswalde (2009) Waldumbaupotential im Land Brandenburg, Wald im Klimawandel—Risiken und Anpassungsstrategien. Eberswalder Forstliche Schriftenreihe 42:144Google Scholar
  40. Ligot G, Balandier P, Fayolle A, Lejeune P, Claessens H (2013) Height competition between Quercus petraea and Fagus sylvativa natural regeneration in mixed and uneven-aged stands. For Ecol Manag 304:391–398. CrossRefGoogle Scholar
  41. Lüpke BV (1998) Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. For Ecol Manag 106:19–26. CrossRefGoogle Scholar
  42. Lüpke BV (2008) Einfluss unterschiedlicher Hiebsformen auf die Naturverjüngung eines Traubeneichen-Buchen-Mischbestandes. Forstarchiv 79:4–15. CrossRefGoogle Scholar
  43. Lüpke BV, Hauskeller-Bullerjahn K (1999) Kahlschlagfreier Waldbau: Wird die Eiche an den Rand gedrängt? Forst und Holz 54:563–568Google Scholar
  44. Lüpke BV, Hauskeller-Bullerjahn K (2004) Beitrag zur Modellierung der Jungwuchsentwicklung am Beispiel von Traubeneichen-Buchen-Mischverjüngungen. Allg Forst Jagdztg 175:61–69Google Scholar
  45. Lüttge U, Kluge M (2012) Botanik—Die einführende Biologie der Pflanzen, 6th edn. Wiley, WeinheimGoogle Scholar
  46. Newbold AJ, Goldsmith FB (1981) The regeneration of oak and beech: a literature review. Discussion papers in conservation. Univ. College London, LondonGoogle Scholar
  47. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76:521–547.;2 CrossRefGoogle Scholar
  48. Niinemets Ü, Aasamaa K, Sõber A, Hartung W (2002) Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees. Tree Physiol 22:267–276. CrossRefPubMedGoogle Scholar
  49. Oksanen E, Freiwald V, Prozherina N, Rousi M (2005) Photosynthesis of birch (Betula pendula) is sensitive to springtime frost and ozone. Can J For Res 35:703–712. CrossRefGoogle Scholar
  50. Oleksyn J, Karolewski P, Giertych MJ, Zytkowiak R, Reich PB, Tjoelker MG (1998) Primary and secondary host plants differ in leaf-level photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the Alder Beetle, Agelastica alni. New Phytol 140:239–249. CrossRefGoogle Scholar
  51. Petersen R, Schüller S, Ammer C (2009) Early growth of planted pedunculate oak (Quercus petraea) in response to varying competition by birch (Betula pendula) over 8 years. Forstarchiv 80:208–214Google Scholar
  52. Pisoke T, Spiecker H (1997) Eichenwertholz aus ungleichaltrigen Beständen. AFZ - Der Wald 52:208–210Google Scholar
  53. Rock J, Puettmann KJ, Gockel HA, Schulte A (2004) Spatial aspects of the influence of silver birch (Betula pendula L.) on growth and quality of young oaks (Quercus spp.) in central Germany. Forestry 77:235–247. CrossRefGoogle Scholar
  54. Rodríguez-Calcerrada J, Pardos JA, Gil L, Reich PB, Aranda I (2008) Light response in seedlings of a temperate (Quercus petraea) and a sub-Mediterranean species (Quercus pyrenaica): contrasting ecological strategies as potential of keys to regeneration performance in mixed marginal populations. Plant Ecol 195:273–285. CrossRefGoogle Scholar
  55. Röhrig E, Bartsch N, Bv Lüpke (2006) Waldbau auf ökologischer Grundlage. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  56. Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362. CrossRefGoogle Scholar
  57. Runkle JR (1984) Development of woody vegetation in treefall gaps in a beech-sugar maple forest. Ecography 7:157–164. CrossRefGoogle Scholar
  58. Saha S, Kuehne C, Bauhus J (2017) Lessons learned from oak cluster planting trials in central Europe. Can J For Res 47:139–148. CrossRefGoogle Scholar
  59. Schütz JP (1991) Lässt sich die Eiche in der Kleinlochstellung erziehen? Ein Beitrag zur Mischung von Lichtbaumarten. Deutscher Verband forstlicher Forschungsanstalten, Sektion ErtragskundeGoogle Scholar
  60. Spellmann H (2001) Bewirtschaftung der Eiche auf der Grundlage waldwachstumskundlicher Untersuchungen in Nordwestdeutschland. Beiträge für Forstwirtschaft und Landschaftsökologie 35:145–152Google Scholar
  61. Terborg O (1998) Die Kohlenstoffassimilation von Rotbuchen und Traubeneichen in einem Mischbestand in der Lüneburger Heide und deren Bedeutung für die interspezifische Konkurrenz. Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  62. Timal G, Balleux P, Ponette Q (2014) La régénération naturelle des chênes indigènes en Wallonie: état des lieux et expériences réussies. Forêt Wallonne 129:8–18Google Scholar
  63. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Ann Rev Ecol Evol Syst 39:237–257. CrossRefGoogle Scholar
  64. Valladares F, Chico J, Aranda I, Balguer L, Dizengremel P, Manrique E, Dreyer E (2002) The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16:395–403. CrossRefGoogle Scholar
  65. Van Cleve J (2012) Natural oak regeneration and vegetation dynamics after group selection harvesting: a case study in southern Germany. Bachelor Thesis. University of FreiburgGoogle Scholar
  66. Van Hees AFM (1997) Growth and morphology of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought. Ann For Sci 54:9–18. CrossRefGoogle Scholar
  67. Vasconcelos AC (2012) Suitability and Growth of Main Tree Species in Rhineland-Palatinate (Germany) under Climate Change—Integration of Several Assessment Methods. Tagungsband (18) der ForeStClim Final Conference, Liverpool 2012Google Scholar
  68. Vernay A, Balandier P, Guinard L, Améglio T, Malagoli P (2016) Photosynthesis capacity of Quercus petraea (Matt.) saplings is affected by Molinia caerulea (L.) under high irradiance. For Ecol Manag 376:107–117. CrossRefGoogle Scholar
  69. Vilhar U, Roženbergar D, Simončič P, Diaci J (2014) Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps. Ann For Sci 72:253–266. CrossRefGoogle Scholar
  70. Wagner S, Röker B (2000) Birkenanflug in Stieleichenkulturen—Untersuchungen zur Dynamik der Konkurrenz über 5 Vegetationsperioden. Forst und Holz 55:18–21Google Scholar
  71. Wagner S, Fischer H, Huth F (2011) Canopy effects on vegetation caused by harvesting and regeneration treatments. Eur J For Res 130:17–40. CrossRefGoogle Scholar
  72. Weinreich A (2000) Qualitätsentwicklung junger Eichen in Bestandeslücken. Dissertation, University of FreiburgGoogle Scholar
  73. Welander NT, Ottosson B (1998) The influence of shading on growth and morphology in seedling of Quercus robur L. and Fagus sylvatica L. For Ecol Manag 107:117–126. CrossRefGoogle Scholar
  74. Welzenbach C (1988) Auswirkungen ausgewählter Standortsfaktoren auf die Eichennaturverjüngung in Bestandeslücken. Diplomarbeit, Universität FreiburgGoogle Scholar
  75. Wetterzentrale (2019): Accessed 20 July 2019
  76. Widen MJ, O’Neil MAP, Dickinson YL, Webster CR (2018) Rubus persistence within silvicultural openings and its impact on regeneration: the influence of opening size and advance regeneration. For Ecol Manag 427:162–168. CrossRefGoogle Scholar
  77. Ziegenhagen B, Kausch W (1995) Productivity of young shaded oaks (Quercus robur L.) as corresponding to shoot morphology and leaf anatomy. For Ecol Manag 72:97–108. CrossRefGoogle Scholar
  78. Ziesche TM (2010) Zum ökologischen Gleichgewicht in Eichenwäldern: Der Einfluss struktureller Bestandesfaktoren auf die funktionale Biodiversität. Wissenstransfer in die Praxis. Eberswalder Forstliche Schriftenreihe 44:49–63Google Scholar
  79. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of SilvicultureAlbert-Ludwigs-Universität FreiburgFreiburg i. Br.Germany
  2. 2.Institute for Technology Assessment and Systems Analysis (ITAS)KarlsruheGermany
  3. 3.School of Forest ResourcesUniversity of MaineOronoUSA

Personalised recommendations