An approach to quantitative plant–soil relationships of saltcedar woodlands throughout central and southeastern Iberian Peninsula (Spain)

  • Joaquín MorenoEmail author
  • Alejandro Terrones
  • María Ángeles Alonso
  • Ana Juan
Original Paper


Saltcedar woodlands are plant formations dominated by several species of the genus Tamarix (Tamaricaceae), representing the potential vegetation in saline, subsaline and wet environments under dry and semi-arid conditions. The broad ecological range of Tamarix communities leads to a heterogeneous floristic composition, with significant differences among habitats in terms of soil and vegetation. Some classification systems for Tamarix communities are only based on vegetation features and do not take any quantitative soil characteristics into account. Twelve Tamarix populations were selected under different ecological environments throughout central and southeastern Iberian Peninsula (Spain). Soil samples and vegetation inventories were collected over the course of 1 year to establish the plant–soil relationships based on constrained ordination analyses. The results showed that three different edaphic gradients were relevant to define the floristic composition of the Spanish saltcedar woodlands: a sodium–moisture gradient, a sulphate–magnesium gradient and a texture gradient. On the basis of these findings, we suggest a new classification system for Tamarix woodlands for the Mediterranean area based on plant–soil relationships. Three vegetation types have been proposed: hyperhalophilous, mesohalophilous and freshwater plant communities. Hyperhalophilous plant communities were characterised by soils with high E.C., high Na+ concentration, low soil moisture and high percentage of clay, being usually dominated by T. boveana and halophytes. Mesohalophilous plant communities had soils with high E.C., high Mg2+ and SO42− concentrations and high percentage of sand, being dominated by T. gallica with mesohalophilous and nitrophilous species. Finally, freshwater plant communities typically showed low E.C., low Na+ concentration and high soil moisture, being characterised by T. gallica with riparian and nitrophilous plants. Since the studied saltcedar woodland communities are notably dependent on soil salinity and moisture, the control of the human activities and hydrological alteration should be considered as a priority to contribute to the global preservation of the Tamarix woodlands.


Tamarix Ecological gradients Plant–soil interactions Quantitative ecology 



The authors wish to thank Prof. Jan Lepš and Prof. Petr Šmilauer for their excellent lessons in the design and analysis of ecological experiments; José Vicente Guardiola for his revision of the statistics methodology; Antonio Sánchez for lending his Bouyoucos densitometers; Nick Marchant for the English review; AEMET (Mº de Agricultura, Alimentación y Medio Ambiente, Spain) for providing the climatic database; and the University of South Bohemia for providing CANOCO v.5 (Microcomputer Power, Ithaca, NY, USA) to perform the statistical analyses. We also want to express our grateful gratitude to the Director and guards of the National Park ‘Tablas de Daimiel’ for providing us with the facilities and permissions to collect material in this protected area. We greatly appreciate the constructive comments by the anonymous reviewers, who acutely helped to improve the manuscript. This research was supported by the Mº de Agricultura, Alimentación y Medio Ambiente of Spanish Government [Project OAPN 354/2011] and the Mº de Educación of Spanish Government [FPU Grant AP-2012-1954]. This study is part of the Ph.D. Thesis of Joaquín Moreno.

Supplementary material

10342_2019_1227_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2145 kb)
10342_2019_1227_MOESM2_ESM.xlsx (66 kb)
Supplementary material 2 (XLSX 65 kb)
10342_2019_1227_MOESM3_ESM.pdf (57 kb)
Figure S1. Ordination diagram of the canonical correspondence analysis (CCA) of saltcedar woodland vegetation from the twelve studied Tamarix communities, showing (a) correlations between plant species and edaphic variables in the axes 1 and 3 and (b) correlations between samples and edaphic variables in the axes 1 and 3. The diagram represents only the forty plant species that were best predicted by the explanatory variables. Arrows indicate the edaphic variables and their directions, and lengths show their relationships to the ordination axes. Edaphic variable abbreviations: E.C., electrical conductivity; moisture, soil moisture; PAWC, plant available water capacity; SAR, sodium adsorption ratio. Species abbreviations: AgrSto, Agrostis stolonifera; BolMar, Bolboschoenus maritimus; BraNap, Brassica napus; CalSep, Calystegia sepium; CapBur, Capsella bursa-pastoris; CheMar, Chenopodium x maroccanum; DipVir, Diplotaxis virgata; ElyHis, Elymus hispidus; HalPor, Halimione portulacoides; JunMar, Juncus maritimus; LacSer, Lactuca serriola; LamAmp, Lamium amplexicaule; LimCri, Limbarda crithmoides; LimAng, Limonium angustebracteatum; LimCae, Limonium caesium; LimDel, Limonium delicatulum; LimDic, Limonium dichotomum; LimSup, Limonium supinum; LygSpa, Lygeum spartum; MedLit, Medicago littoralis; PhaAru, Phalaris arundinacea; PhrAus, Phragmites australis subsp. australis; PlaCor, Plantago coronopus; PolMon; Polypogon monspeliensis; PopAlb, Populus alba; PopNig, Populus nigra; RumCon, Rumex conglomeratus; RumPal, Rumex palustris; SalFru, Salicornia fruticosa; SamVal, Samolus valerandi; SedCae, Sedum caespitosum; SilMar, Silybum marianum; SonAsp, Sonchus asper; SuaVer, Suaeda vera; TamBov, Tamarix boveana; TamGal, Tamarix gallica; TypDom, Typha domingensis; UlmGla, Ulmus glabra; VerPer, Veronica persica; XanIta, Xanthium italicum. Site abbreviations: P1, Algeciras Island; P2, Casa Blanca Stream; P3, Gato Ravine; P4, Cigüela River; P5, the downstream zone; P6, Guadiana River; P7, Guadalentín Saltmarsh; P8, Agramón Saltmarsh; P9, Elche Reservoir; P10, El Carmolí Saltmarsh; P11, Requena Saltmarsh; P12, Salinas Lagoon. Time abbreviations: i, autumn (October 2013); ii, winter (January 2014); iii, spring (April 2014); iv, summer (July 2014). (PDF 56 kb)
10342_2019_1227_MOESM4_ESM.pdf (40 kb)
Figure S2. Variations in Ca2+ and K+ concentrations, Ca2+/Mg2+, K+/Na+ and pH in the different saltcedar woodland communities depending on the period. Shared letters indicate no difference between Tamarix communities for each period (Significance test P ≤ 0.05). Asterisks show significant differences between periods within the same vegetation type (significance test P ≤ 0.05). (PDF 39 kb)


  1. AEMET (2013) Resumen anual climatológico 2013. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  2. AEMET (2014) Resumen anual climatológico 2014. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentación y Medio Ambiente, MadridGoogle Scholar
  3. Alcaraz F, Sánchez-Gómez P, de la Torre A, Ríos S, Álvarez Rogel J (1991) Datos sobre la vegetación de Murcia (España). Guía geobotánica de la Excursión de las XI Jornadas de Fitosociología. PPU-DM, LéridaGoogle Scholar
  4. Álvarez-Cobelas M, Cirujano S, Sánchez-Carrillo S (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biol Conserv 97:89–98. CrossRefGoogle Scholar
  5. Álvarez-Rogel J, Alcaraz F, Ortiz R (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of southeast Spain. Wetlands 20(2):357–372.;2 CrossRefGoogle Scholar
  6. Álvarez-Rogel J, Jiménez-Cárceles FJ, Roca MJ, Ortiz R (2007) Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci 73(3–4):510–526. CrossRefGoogle Scholar
  7. Baum BR (1967) Introduced and naturalized tamarisks in the United States and Canada. Baileya 15:19–25Google Scholar
  8. Baum BR (1978) The genus Tamarix. The Israel Academy of Sciences and Humanities, JerusalemGoogle Scholar
  9. Berzas JJ, García LF, Rodríguez RC, Martín-Álvarez PJ (2000) Evolution of the water quality of a managed natural wetland: Tablas de Daimiel National Park (Spain). Water Res 34(12):3161–3170. CrossRefGoogle Scholar
  10. Blanca G, Cabezudo B, Cueto M, Salazar C, Morales Torres C (eds) (2011) Flora Vascular de Andalucía Oriental, 2nd edn. Universidades de Almería, Granada, Jaén y Málaga, GranadaGoogle Scholar
  11. Braun-Blanquet J (1946) Über den Deckungswert der Arten in den Pfl anzengesellschaften der Ordnung Vaccinio-Piceetalia. Jahresber Naturforsch Ges Graubündens 130:115–119Google Scholar
  12. Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de las comunidades vegetales. Blume, MadridGoogle Scholar
  13. Burt R (2004) Soil Survey Laboratory Methods Manual, version 4.0. Soil Survey Investigations Report Nº42. United States Department of Agriculture (USDA)—Natural Resources Conservation Service (NRCS), LincolnGoogle Scholar
  14. Cano E, Valle F, Salazar C, García-Fuentes A, Torres JA (2004) Tarayales del sur de la Península Ibérica. Colloqu Phytosociol 28:591–612Google Scholar
  15. Castroviejo S (coord gen) (1986–2015) Flora iberica 1–16(I), 17–18, 20–21. Real Jardín Botánico, CSIC, MadridGoogle Scholar
  16. Chapman VJ (1940) Studies in salt-marsh ecology. Sections VI and VII. Comparison with marshes on the east coast of North America. J Ecol 28(1):118–152. CrossRefGoogle Scholar
  17. Chapman VJ (1974) Salt marshes and salt deserts of the world, 2nd edn. J. Cramer, LehreGoogle Scholar
  18. Cirujano S (1993) Tamarix L. In: Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Muñoz Garmendia F, Navarro C, Paiva J, Soriano C (eds) Flora iberica 3. Real Jardín Botánico, CSIC, Madrid, pp 437–445Google Scholar
  19. Conan C, de Marsily G, Bouraoui F, Bidoglio G (2003) A long-term hydrological modelling of the Upper Guadiana river basin (Spain). Phys Chem Earth 28(4–5):193–200. CrossRefGoogle Scholar
  20. Custodio E, Llamas MR (2001) Hidrología subterránea, 2nd edn. Omega, BarcelonaGoogle Scholar
  21. Davis MM, Sprecher SW, Wakeley JS, Best GR (1996) Environmental gradients and identification of wetlands in North-Central Florida. Wetlands 16:512–523. CrossRefGoogle Scholar
  22. Deckers JA, Nachtergaele FO, Spaargaren OC (eds) (1998) World reference base for soil resources. Introduction. ISSS/ISRIC/FAO, Acco, Leuven/AmersfoortGoogle Scholar
  23. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, MassachusettsGoogle Scholar
  24. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. CrossRefGoogle Scholar
  25. Garilleti R, Calleja JA, Lara F (2012) Vegetación ribereña de los ríos y ramblas de la España meridional (península y archipiélagos). Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España, MadridGoogle Scholar
  26. Gasith A, Resh VH (1999) Streams in Mediterranean Climate Regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. CrossRefGoogle Scholar
  27. Gaskin JF, Schaal B (2003) Molecular phylogenetic investigation of U.S. invasive Tamarix. Syst Bot 28(1):86–95. Google Scholar
  28. González-Alcaraz MN, Jiménez-Cárceles FJ, Álvarez Y, Álvarez-Rogel J (2014) Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. CATENA 115:150–158. CrossRefGoogle Scholar
  29. Harrell Jr FE, Dupont MC (2006) The Hmisc package. R Package, version, 2-0Google Scholar
  30. Harris DC (2003) Quantitative chemical analysis, 6th edn. W.H. Freeman, New YorkGoogle Scholar
  31. Hervé M (2011) GrapheR: a multiplatform GUI for drawing customizable graphs in R. R J 3(2):45–53CrossRefGoogle Scholar
  32. Hothorn T, Bretz F, Hothorn MT (2009) The multcomp package. Technical report 1.0-6, The R Project for Statistical Computing. Accessed 20 Jan 2019
  33. IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  34. Izco J, Fernández F, Molina A (1984) El orden Tamaricetalia Br.-Bl. and Bolós 1957 y su ampliación con los tarayales hiperhalófilos. Doc Phytosociol 8:377–392Google Scholar
  35. Juárez M, Sánchez A, Jordá J, Sánchez J (2004) Diagnóstico del potencial nutritivo del suelo. Universidad de Alicante, AlicanteGoogle Scholar
  36. Kaown D, Koh D, Mayer B, Lee K (2009) Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agr Ecosyst Environ 132(3–4):223–231. CrossRefGoogle Scholar
  37. Lara F, Garilleti R, Calleja JA (2004) La vegetación de ribera de la mitad norte española. Ministerio del Medio Ambiente y Ministerio de Fomento, CEDEX, MadridGoogle Scholar
  38. Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7(5):573–579. CrossRefGoogle Scholar
  39. Lepš J, Šmilauer P (2014) Multivariate analysis of ecological data using CANOCO 5, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  40. Mateo G, Crespo MB (2009) Manual para la determinación de la flora valenciana, 4th edn. Librería Compás, AlicanteGoogle Scholar
  41. Meinzer OE (1927) Plants as indicators of groundwater. U.S. Geological Survey Water Supply Paper 577Google Scholar
  42. Moreno J, Terrones A, Juan A, Alonso MA (2018) Halophytic plant community patterns in Mediterranean saltmarshes: shedding light on the connection between abiotic factors and the distribution of halophytes. Plant Soil 430:185–204. CrossRefGoogle Scholar
  43. Mota JF, Sánchez-Gómez P, Guirado JS (eds) (2011) Diversidad vegetal de las yeseras ibéricas. El reto de los archipiélagos edáficos para la biología de la conservación. ADIF-Mediterráneo Asesores Consultores, AlmeríaGoogle Scholar
  44. Munsell® Corporation (1994) Soil colour charts, revised edition. Macbeth Division of Kollmorgen Instruments Corporation, New WindsorGoogle Scholar
  45. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. CrossRefGoogle Scholar
  46. Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert MJ (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343. CrossRefGoogle Scholar
  47. Piernik A (2003) Inland halophilous vegetation as indicator of soil salinity. Basic Appl Ecol 4:525–536. CrossRefGoogle Scholar
  48. Piirainen M, Liebisch O, Kadereit G (2017) Phylogeny, biogeography, systematics and taxonomy of Salicornioideae (Amaranthaceae/Chenopodiaceae)—a cosmopolitan, highly specialized hygrohalophyte lineage dating back to the Oligocene. Taxon 66(1):109–132. CrossRefGoogle Scholar
  49. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-96. R Foundation for Statistical Computing, ViennaGoogle Scholar
  50. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Accessed 20 Jan 2019
  51. Richards LA (1974) Diagnóstico y rehabilitación de suelos salinos y sódicos. Limusa, MexicoGoogle Scholar
  52. Rivas-Martínez S (2007) Mapa de series, geoseries y geopermaseries de vegetación de España. Memoria del mapa de vegetación potencial de España, Parte I. Itinera Geobot 17:5–436Google Scholar
  53. Salinas MJ, Casas J (2007) Riparian vegetation of two semiarid Mediterranean rivers: basin-scale responses of woody and herbaceous plants to environmental gradients. Wetlands 27(4):831–845.;2 CrossRefGoogle Scholar
  54. Salinas MJ, Blanca G, Romero AT (2000) Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the South-Eastern Iberian Peninsula. Environ Conserv 27(1):24–35. CrossRefGoogle Scholar
  55. Sebastián-González E, Molina JA, Paracuellos M (2012) Distribution patterns of a marsh vegetation metacommunity in relation to habitat configuration. Aquat Biol 16:277–285. CrossRefGoogle Scholar
  56. Stromberg J (1998) Dynamics of Fremont cottonwood (Populus fremontii) and saltcedar (Tamarix chinensis) populations along the San Pedro River, Arizona. J Arid Environ 40:133–155. CrossRefGoogle Scholar
  57. Stromberg JC, Lite SJ, Marler R, Parazdick C, Shafroth PB, Shorrock D, White JM, White MS (2007) Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecol Biogeogr 16:381–393. CrossRefGoogle Scholar
  58. Tabachnick BG, Fidell LS (2007) Using multivariate statistics, 5th edn. Pearson, BostonGoogle Scholar
  59. USDA (2017) Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Accessed 20 Jan 2019
  60. Villar JL (2017) Tamarix. In: Euro + Med Plantbase—the information resource for Euro-Mediterranean plant diversity. Published on the Internet, Accessed 6th July 2019
  61. Villar JL, Alonso MA, Juan A, Gaskin JF, Crespo MB (2019) Out of the Middle East: new phylogenetic insights in the genus Tamarix (Tamaricaceae). J Syst Evol. Google Scholar
  62. Vives R, Fernández T, Águila M, Esteve MA, Núñez MA, Giménez L (2011) Los saladares del Guadalentín. Ayuntamiento de Alhama de Murcia, MurciaGoogle Scholar
  63. Welde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, BerlinGoogle Scholar
  64. Zedler JB, Callaway JC, Desmond JS, Vivian-Smith G, Williams GD, Sullivan G, Brewster AE, Bradshaw BK (1999) Californian salt marsh vegetation: an improved model of spatial pattern. Ecosystems 2:19–35. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias Ambientales y Recursos NaturalesUniversidad de AlicanteSan Vicente del RaspeigSpain

Personalised recommendations