Advertisement

Pre-harvest Micronized Calcium and Postharvest UV-C Treatments Extend the Quality of ‘Crimson Seedless’ (Vitis vinifera L.) Grapes

  • Ferhan K. SabirEmail author
  • Ali Sabir
Original Article
  • 11 Downloads

Abstract

Certain postharvest disorders such as rachis desiccation, weight loss, accelerated softening and biochemical changes limit the postharvest life of table grapes. The present study was conducted to evaluate the effect of pre-harvest micronized calcium pulverizations, postharvest UV-C treatment and their combined applications on extending postharvest quality of table grapes cv ‘Crimson Seedless’. Pre-harvest micronized calcium pulverization was performed to improve rachis greenness and berry resistance while postharvest UV-C was aimed to induce physiological resistance and delay senescence in grape berries. Ca treatments significantly increased chlorophyll concentrations of rachis while Ca plus UV-C was the best treatment to maintain rachis chlorophyll concentration. UV-C with or without pre-harvest Ca treatment effectively delayed the weight loss during the storage. Ca delayed the increase of SSC during the storage. All the treatments, particularly postharvest UV-C, significantly delayed the berry senescence by delaying the decrease in acidity. UV-C with or without Ca, with the lowest values, significantly retarded the changes in phenols and decreased the berry decay. Ca plus UV-C treatment also effectively maintained the skin rupture force during the storage. Overall, pre-harvest micronized Ca pulverizations plus postharvest UV-C treatment can be recommended to extent the quality of table grapes cv. ‘Crimson Seedless’ up to 120 days at cold storage.

Keywords

‘Crimson Seedless’ Table grape Quality maintenance Postharvest physiology 

Behandlungen mit mikronisiertem Calcium vor der Ernte und UV-C-Bestrahlung nach der Ernte verbessern die Qualität der Tafeltraubensorte ‘Crimson Seedless‘ (Vitis vinifera L.)

Schlüsselwörter

‘Crimson Seedless’ Tafeltrauben Haltbarkeit Nachernte-Physiologie 

Notes

Conflict of interest

F.K. Sabir and A. Sabir declare that they have no competing interests.

References

  1. Agar IT, Kafkas S, Kaska N (1997) Variation in kernel chlorophyll content of different pistachio varieties grown in six countries. Acta Hortic 470:372–377Google Scholar
  2. Akbudak B, Karabulut ÖA (2002) A research on preventing by using Ultraviolet-C (UV-C) light treatments of quality losses and disorders caused by gray mold (Botrytis cinerea Pers:Fr.) in grape storage. Agric J Uludag Univ 16:35–46Google Scholar
  3. AOAC (1984) Official methods of analysis, 14th edn. Association of Officials Analytical Chemists, Washington, DC. (Methods 2.21–2.25 and 3.013–3.016)Google Scholar
  4. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”, The FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  5. Charles MT, Kalantari S, Corcuff R, Arul J (2005) Postharvest quality and sensory evaluation of UV-C treated tomato fruit. Acta Hort 682:537–540CrossRefGoogle Scholar
  6. Crisosto CH, Garner D, Crisosto G (2002) Carbon dioxide enriched atmospheres during cold storage limit losses from Botrytis but accelerates rachis browning of ‘Red Globe’ table grapes. Postharvest Biol Technol 26:181–189CrossRefGoogle Scholar
  7. Droby S, Chalutz E, Horev B, Cohen L, Gaba V, Wilson CL, Wisniewski ME (1993) Factors affecting UV-induced resistance in grapefruit against the green mould decay caused by Penicillium digitatum. Plant Pathol 42:418–425CrossRefGoogle Scholar
  8. Fidelibus MW, Cathline KA, Burns J (2007) Potential abscission agents for raisin, table, and wine grapes. Hort Sci 42:1626–1630Google Scholar
  9. Gallo V, Mastrorilli P, Cafagna I, Nitti GI, Latronico M et al (2014) Effects of agronomical practices on chemical composition of table grapes evaluated by NMR spectroscopy. J Food Compos Analys 35:44–52CrossRefGoogle Scholar
  10. Genova G, Iacopini P, Baldi M, Ranieri A, Storchi P, Sebastiani, L (2012) Temperature and storage effects on antioxidant activity of juice from red and white grapes. Int J Food Sci Technol 47:13–23Google Scholar
  11. El Ghaouth A, Smilanick JL, Wilson CL (2000) Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol Technol 19:103–110CrossRefGoogle Scholar
  12. Guerra M, Casquero PA (2008) Effect of harvest date on cold storage and postharvest quality of plum cv. Green Gage. Postharv Biol Technol 47:325–332.  https://doi.org/10.1016/j.postharvbio.2007.07.009 CrossRefGoogle Scholar
  13. Human MA (2010) Effect of shading and ethephon on the anthocyanin composition of ‘Crimson Seedless’ (Vitis vinifera L.). MSc thesis, Faculty of AgriSciences, Stellenbosch University, South AfricaGoogle Scholar
  14. Imlak M, Randhawa MA, Hassan A, Ahmad N, Nadeem M (2017) Post-harvest shelf life extension and nutritional profile of thompson seedless table grapes under calcium chloride and modified atmospheric storage. J Food Process Technol 8:1.  https://doi.org/10.4172/2157-7110.1000648 Google Scholar
  15. Javed MS, Randhawa MA, Butt MS, Nawaz H (2016) Effect of calcium lactate and modified atmosphere storage on biochemical characteristics of guava fruit. J Food Process Preserv 40:657–666CrossRefGoogle Scholar
  16. Kader AA (2002) Postharvest biology and technology: an overview. In: Kader AA (ed) Postharvest Technology of Horticultural Crops. University of California and Agricultural and Natural Resources, Berkeley, pp 145–148 (Publication 3311)Google Scholar
  17. Lichter A, Kaplunov T, Zutahy Y, Daus A, Alchanatis V, Ostrovsky V, Lurie S (2011) Physical and visual properties of grape rachis as affected by water vapor pressure deficit. Postharvest Biol Technol 59:25–33Google Scholar
  18. Liu Q, Xi Z, Gao J, Meng Y, Lin S et al (2016) Effects of exogenous 24-epibrassinolide to control grey mold and maintain post-harvest quality of table grapes. Int J Food Sci Technol 51:1236–1243CrossRefGoogle Scholar
  19. Lu JY, Stevens C, Khan VA, Kabwe MK, Wilson CL (1991) The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. J Food Qual 14:299–305CrossRefGoogle Scholar
  20. Marzouka HA, Kassem HA (2011) Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci Hortic 130:425–430CrossRefGoogle Scholar
  21. Nelson KE (1985) Harvesting and handling California table grapes for market. Bull. 1913, Univ. Calif., DANR Pub., Oakland CA, 72 ppGoogle Scholar
  22. Nigro F, Schena L, Ligorio A, Pentimone I, Ippolito A, Salerno MG (2006) Control of table grape storage rots by preharvest applications of salts. Postharvest Biol Technol 42:142–149CrossRefGoogle Scholar
  23. Pedreschi R, Lurie S, Hertog M, Nicolai B, Mes J, Woltering E (2013) Post-harvest proteomics and food security. Proteomics 13:1772–1783CrossRefGoogle Scholar
  24. Picchioni GA, Watada AE, Whitaker BD, Reyes A (1996) Calcium delays senescence related lipid changes and increases net synthesis of membrane lipid components in shredded carrots. Postharvest Biol Technol 9:235–245CrossRefGoogle Scholar
  25. Pretel MT, Martinez-Madrid MC, Martinez JR, Carreno JC, Romojaro F (2006) Prolonged storage of ‘Aledo’ table grapes in a slightly CO2 enriched atmosphere in combination with generators of SO2. LWT-Food Sci Technol 39:1109–1116CrossRefGoogle Scholar
  26. Romanazzi G, Lichter A, Mlikota GF, Smilanick JL (2012) Natural and safe alternatives to conventional methods to control post-harvest gray mold of table grapes. Postharvest Biol Technol 63:141–147CrossRefGoogle Scholar
  27. Sabir A (2013) Improvement of grafting efficiency in hard grafting grape Berlandieri hybrid rootstocks by plant growth-promoting rhizobacteria (PGPR). Sci Hortic 164:24–29CrossRefGoogle Scholar
  28. Sabir A, Sabir FK (2009) Postharvest treatments to preserve table grape quality during storage and approaches to find better ways alternative for SO2. Advances Environ Biol 3:286–295Google Scholar
  29. Sabir FK, Sabir A (2013) Quality response of table grapes (Vitis vinifera L.) during cold storage to postharvest cap stem excision and hot water treatments. Int J Food Sci Technol 48:999–1006CrossRefGoogle Scholar
  30. Sabir FK, Sabir A (2017a) Extending postharvest quality attributes of grapes (V. vinifera L. cv. ‘Thompson Seedless’) by preharvest calcium pulverizations. Acta Sci Pol Hortorum Cultus 16:29–38CrossRefGoogle Scholar
  31. Sabir FK, Sabir A (2017b) Postharvest quality maintenance of table grapes cv. ’Alphonse Lavallée’ by exogenous applications of salicylic acid, oxalic acid and MAP. Erwerbs-Obstbau 59:211–219CrossRefGoogle Scholar
  32. Sen F, Oksar R, Kesgin M (2016) Effects of shading and covering on ‘Sultana Seedless’ grape quality and storability. J Agr Sci Technol 18:245–254Google Scholar
  33. Singleton VL, Orthofer R, Lamuela-Ravento RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Packer L (ed) Methods in enzymology, vol 299. Academic Press, San Diego, pp 152–315Google Scholar
  34. Solari-Godiño A, Lindo-Rojas I, Pandia-Estrada S (2017) Determination of phenolic compounds and evaluation of antioxidant capacity of two grapes residues (Vitis vinifera) of varieties dried: Quebranta (red) and Torontel (white). Cogent Food Agric 3(1).  https://doi.org/10.1080/23311932.2017.1361599 Google Scholar
  35. Stevens C, Wilson CL, Lu JY, Khan VA, Chalutz E, Droby S, Kabwe MK, Haung Z, Adeyeye O, Pusey LP, Wisniewski ME, West M (1996) Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits. Crop Prot 15:129–134CrossRefGoogle Scholar
  36. Sung SJ, Xu DP, Galloway CM, Black CC (1988) A reassessment of glycolysis and gluconeogenesis in higher plants. Physiol Plant 72:650–654CrossRefGoogle Scholar
  37. Thaipong K, Boonprakob U, Crosby K, Byrne DH (2006) Comparison of ABTS, DPPH, RAP, and ORAC assays for estimating antioxidant activity from guava extracts. J Food Compos Anal 19:669–675CrossRefGoogle Scholar
  38. Turkmen FU, Takci HAM (2018) Ultraviolet-C and ultraviolet-B lights effect on black carrot (Daucus carota ssp. sativus) juice. J Food Meas Charac 12:1038–1046CrossRefGoogle Scholar
  39. Vicente AR, Manganaris GA, Sozzi GO, Crisosto CH (2009) Nutritional quality of fruits and vegetables. In: Florkowski WJ, Shewfelt RL, Brueckner B, Prussia SE (eds) Postharvest handling: a systems approach. Elsevier, San Diego, pp 57–106CrossRefGoogle Scholar
  40. Wehr JB, Menzies NL, Blamey FPC (2004) Inhibition of cell wall autolysis and pectin degradation by cations. Plant Physiol Biochem 42:485–492CrossRefGoogle Scholar
  41. Yousefi S, Amiri ME, Mirabdulbaghi M (2015) Biochemical properties and fruit quality of ‘Jahangiri’ apricot fruit under calcium chloride treatment. Int J Agron Resear 48:81–94Google Scholar
  42. Youssef K, Roberto SR, Chiarotti F, Koyama R, Hussain I, de Souzac RT (2015) Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’ during cold storage. Sci Hortic 193:316–321CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Agriculture Faculty Horticulture DepartmentSelcuk UniversityKonyaTurkey

Personalised recommendations