Advertisement

The Effects of Drying Parameters on Drying Characteristics, Colorimetric Differences, Antioxidant Capacity and Total Phenols of Sliced Kiwifruit

  • Hakan O. Mengeş
  • Ahmet Ünver
  • Mehmet Musa Özcan
  • Can ErtekinEmail author
Original Article
  • 10 Downloads

Abstract

The influence of drying parameters on drying characteristics, colorimetric differences, antioxidant capacity and total phenols of sliced kiwifruit were researched. The kiwi fruits dried between 2.6 h and 12.1 h for different drying conditions. Total phenol content of dried fruits were ranged from 2.03–2.71 mg GAE/L. Free radical scavenging activity were varied from 26.04% to 40.91%. The effect of different drying temperatures were not very effective on the total phenol content of kiwi fruits. But, the free radical scavenging activity were variable. While L* value were in the range of 51.41 and 72.90, the a* value were ranged between −8.22 and 3.47 and the b* value between 22.24 and 40.37. The most suitable model is Midilli et al. model with low RMSE, reduced chi-square and high modeling efficiency values. While the effective diffusivity ranged between 2.63 × 10−10 and 1.29 × 10−9 m2.s−1, the activation energy was between 28.51 and 34.16 kJ mol−1.

Keywords

Kiwifruit Total phenol Radical scavenging activity Colour Drying 

Auswirkungen verschiedener Trocknungsparameter auf Trocknungsverhalten, kolorimetrische Unterschiede, antioxidative Kapazität und Gesamtphenolgehalt von in Scheiben geschnittenen Kiwifrüchten

Schlüsselwörter

Kiwi Gesamtphenolgehalt Radikalfänger-Eigenschaft Farbe Trocknung 

Notes

Acknowledgements

The authors wish to thank Selcuk and Akdeniz Universities Scientific Research Project Units.

Conflict of interest

H.O. Mengeş, A. Ünver, M.M. Özcan and C. Ertekin declare that they have no competing interests.

References

  1. Akhondi E, Kazemi A, Maghsoodi V (2011) Determination of a suitable thin layer drying curve model for saffron (Crocus sativus L) stigmas in an infrared dryer. Sci Iran 18:1397–1401CrossRefGoogle Scholar
  2. Akpinar EK (2010) Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Convers Manag 51:2407–2418CrossRefGoogle Scholar
  3. Akpinar EK (2011) Drying of parsley leaves in a solar dryer and under open sun: modeling, energy and exergy aspects. J Food Process Eng 34:27–48CrossRefGoogle Scholar
  4. Anonymous (2010) Health Benefits of Kiwi Fruit. http://kiwi-fruit.info/health-benefits-of-kiwi-fruit/ Google Scholar
  5. Bahloul N, Boudhrioua N, Kouhila M (2011) Convective solar drying of olive leaves. J Food Process Eng 34:1338–1362CrossRefGoogle Scholar
  6. Balasubramanian S, Sharma R, Gupta RK, Patil RT (2011) Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves. J Food Sci Technol 48:685–691CrossRefGoogle Scholar
  7. Brusewitz GH (1975) Density of rewetted high moisture grains. Trans Asae 18:935–938CrossRefGoogle Scholar
  8. Ceylan I, Aktas M, Dogan H (2007) Mathematical modeling of drying characteristics of tropical fruits. Appl Therm Eng 27:1931–1936CrossRefGoogle Scholar
  9. Chowdhury MMI, Bala BK, Haque MA (2011) Mathematical modeling of thin layer drying of jackfruit leather. J Food Process Preserv 35:797–805CrossRefGoogle Scholar
  10. Corzo O, Bracho N, Vasquez A (2010) Determination of suitable thin layer model for air drying of coroba slices (Attalea maripa) at different air temperatures and velocities. J Food Process Preserv 34:587–598CrossRefGoogle Scholar
  11. Crank J (1975) The mathematics of diffusion. Clarendon Press, OxfordGoogle Scholar
  12. Demiray E, Tulek Y (2012) Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transf 48:841–847CrossRefGoogle Scholar
  13. Diamante LM, Ihns R, Savage GP, Vanhanen L (2010) A new mathematical model for thin layer drying of fruits. Int J Food Sci Technol 45:1956–1962CrossRefGoogle Scholar
  14. Dissa AO, Bathiebo DJ, Desmorieux H, Coulibaly O, Koulidiati J (2011) Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy 36:2517–2527CrossRefGoogle Scholar
  15. Doymaz I (2009) Mathematical modelling of thin-layer drying of kiwifruit slices. J Food Process Preserv 33:145–160CrossRefGoogle Scholar
  16. Doymaz I (2012) Drying of potato slices: effect of pretreatments and mathematical modeling. J Food Process Preserv 36:310–319CrossRefGoogle Scholar
  17. Evin D (2012) Thin layer drying kinetics of Gundelia tournefortii L. Food Bioprod Process 90:323–332CrossRefGoogle Scholar
  18. Fan H, Wu Y, Hu X (2011) Characteristics of thin-layer drying and rehydration of nata de coco. Int J Food Sci Technol 46:1438–1444CrossRefGoogle Scholar
  19. Femenia A, Serrano GS, Simal S, Garau MC, Eim VS, Rossello C (2009) Effects of air-drying temperature on the cell walls of kiwifruit processed at different stages of ripening. LWT Food Sci Technol 42(1):106–112.  https://doi.org/10.1016/j.lwt.2008.05.022 CrossRefGoogle Scholar
  20. Ferguson AR, Mcrae EA (1991) Vitamin C in actinidia. Acta Hortic 297:481–487Google Scholar
  21. Fisk CL, Mcdaniel MR, Strik BC, Zhao Y (2006) Physicochemical, sensory, and nutritive qualities of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’) as affected by harvest maturity and storage. J Food Sci 71:204–S210CrossRefGoogle Scholar
  22. Gyamfi MA, Yonamine M, Aniya Y (1999) Free radical scavenging action of medical herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen Pharmacol 32(6):661–667.  https://doi.org/10.1016/s0306-3623(98)00238-9 CrossRefGoogle Scholar
  23. Hii CL, Law CL, Cloke M (2009) Modeling using a new thin layer drying model and product quality of cocoa. J Food Eng 90:191–198CrossRefGoogle Scholar
  24. Imeh U, Khokhar S (2002) Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. J Agric Food Chem 50:6301–6306CrossRefGoogle Scholar
  25. Jayaprakasam B, Vareed SK, Olson LK, Nair MG (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 53:28–31CrossRefGoogle Scholar
  26. Jung KA, Song TC, Han DS, Kim IH, Kim YE, Lee YE (2005) Cardiovascular protective properties of kiwifruit extracts in vitro. Biol Pharm Bull 28:1782–1785CrossRefGoogle Scholar
  27. Katsube T, Tabata H, Ohta Y (2004) Screening for antioxidant activity in edible plant products: Comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu assay. J Agric Food Chem 52:2391–2396CrossRefGoogle Scholar
  28. Kaya A, Aydin O, Dincer I (2008) Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia deliciosa Planch). J Food Eng 88:323–330CrossRefGoogle Scholar
  29. Kaya A, Aydin O, Kolayli S (2010) Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioprod Process 88:165–173CrossRefGoogle Scholar
  30. Kayisoglu S, Ertekin C (2011) Vacuum drying kinetics of barbunya bean (Phaseolus vulgaris L. elipticus Mart.). Philipp Agric Sci 94:285–291Google Scholar
  31. Krupa T, Latocha P, Liwinska A (2011) Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage. Sci Hortic 130:410–417CrossRefGoogle Scholar
  32. Kumar N, Sarkar BC, Sharma HK (2012) Mathematical modelling of thin layer hot air drying of carrot pomace. J Food Sci Technol 49:33–41CrossRefGoogle Scholar
  33. Kurozawa LE, Azoubel PM, Xidieh M, Fernanda E (2012) Drying kinetic of fresh and osmotically dehydrated mushroom (Agaricus blazei). J Food Process Eng 35:295–313CrossRefGoogle Scholar
  34. Lee SK, Kader AA (2000) Pre-harvest and post-harvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220CrossRefGoogle Scholar
  35. Leong LP, Shui G (2002) An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69–75CrossRefGoogle Scholar
  36. Leonid AB, Vladimir PG, Andrew VB, Alexander ML, Valeriy L, Vladimir AK (2006) The investigation of low temperature vacuum drying processes of agricultural materials. J Food Eng 74:410–415CrossRefGoogle Scholar
  37. Leontowicz M, Leontowicz H, Drzewiecki J, Jastrzebski Z, Haruenkit R, Poovarodom S, Park YS, Jung ST, Kang SG, Trakhtenberg S, Gorinstein S (2007) Two exotic fruits positively affect rat’s plasma composition. Food Chem 102:192–200CrossRefGoogle Scholar
  38. Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: A comparative study. Food Chem 103:1003–1008CrossRefGoogle Scholar
  39. Martin RA (2003) The production and marketing of New Zealand kiwifruit. In: Huang H (ed) Procedings of the V International Symposium on Kiwifruit ISHS Acta Horticulturae.Google Scholar
  40. Maskan M (2001a) Kinetics of colour change of kiwifruits during hot air and microwave drying. J Food Eng 48:169–175CrossRefGoogle Scholar
  41. Maskan M (2001b) Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J Food Eng 48:177–182CrossRefGoogle Scholar
  42. Mengec HO, Ertekin C (2006) Mathematical Modeling of thin layer drying of golden apples. J Food Eng 77:119–125CrossRefGoogle Scholar
  43. Mohammadi A, Rafiee S, Emam-Djomeh Z, Keyhani AR (2008a) Kinetic models for colour changes in kiwifruit slices during hot air drying. World J Agric Sci 4:376–383Google Scholar
  44. Mohammadi A, Rafiee S, Keyhani A, Emam-Djomeh Z (2008b) Estimation of thin-layer drying characteristics of kiwifruit (cv. Hayward) with use of Page’s Model. Am-Eur J Agric Environ Sci 3:802–805Google Scholar
  45. Mohammadi A, Rafiee S, Keyhani AR, Emam-Djomeh Z (2009) Moisture content modeling of sliced kiwifruit (cv. Hayward) during drying. Pak J Nutr 8:78–82CrossRefGoogle Scholar
  46. Mujumdar AS (1995) Handbook of industrial drying. Marcel Dekker, Inc, New York, BaselGoogle Scholar
  47. Nuh DN, Brinkworth BJ (1997) A novel thin-layer model for crop drying. Trans Asae 40:659–669CrossRefGoogle Scholar
  48. Ogura N (1993) Theory and method of preseving for food. In: Ogura N (ed) Food processing study. Kenpakusha Co., Ltd, Tokyo, pp 3–35Google Scholar
  49. Ojediran JO, Raji AO (2011) Thin-layer drying characteristics of castor (Ricinus communis) seeds. J Food Process Preserv 35:647–655CrossRefGoogle Scholar
  50. Orikasa T, Wu L, Shiina T, Tagawa A (2008) Drying characteristics of kiwifruit during hot air drying. J Food Eng 85:303–308CrossRefGoogle Scholar
  51. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,20-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157CrossRefGoogle Scholar
  52. Pala M, Mahmutoglu T, Saygi B (1996) Effects of pretreatments on the quality of open-air and solar dried apricots. Nahrung 40:137–141CrossRefGoogle Scholar
  53. Park YS, Jung ST, Kang SG, Delgado-Licon E, Katrich E, Tashma Z, Trakhtenberg S, Gorinstein S (2006a) In vitro studies of polyphenols, antioxidants and other dietary indices in kiwifruit (Actinidia deliciosa). Int J Food Sci Nutr 57:107–122CrossRefGoogle Scholar
  54. Park YS, Jung ST, Kang SG, Delgado-Licon E, Katrich E, Tashma Z, Trakhtenberg S, Gorinstein S (2006b) Effect of ethylene treatment on kiwifruit bioactivity. Plant Foods Hum Nutr 61:151–156CrossRefGoogle Scholar
  55. Park YS, Jung ST, Kang SG, Heo GB, Avila PA, Toledo F, Drzewiecki J, Namiesnik J, Gorinstein S (2008) Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem 107:640–648CrossRefGoogle Scholar
  56. Park YS, Leontowicz H, Leontowicz M, Namiesnik J, Suhaj M, Cvikrova M, Martincova O, Weisz M, Gorinstein S (2011) Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. J Food Compost Anal 24:963–970CrossRefGoogle Scholar
  57. Riva M, Peri C (1986) Kinetics of sun and air drying of different varieties of seedless grapes. J Food Sci Technol 21(2):199–208.  https://doi.org/10.1111/j.1365-2621.1986.tb00441.x CrossRefGoogle Scholar
  58. Salinero MC, Vela P, Sainz MJ (2009) Phenological growth stages of kiwifruit (Actinidia deliciosa ‘Hayward’). Sci Hortic 121:27–31CrossRefGoogle Scholar
  59. Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M (2005) Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207–213CrossRefGoogle Scholar
  60. Simal S, Femenia A, Garau MC, Rossello C (2005) Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J Food Eng 66:323–328CrossRefGoogle Scholar
  61. Slinkard K, Singelton VL (1977) Total phenolic analysis. automation and comparison with manual methods. Am J Enol Vitic 28:49–55Google Scholar
  62. Soysal Y, Oztekin S, Isikber AA, Duman AD, Dayisoglu KS (2005) Kurutulmus kirmizi biberde rengin bir kalite parametresi olarak önemi. In: Procedings of the III. Tarımsal Urunleri Kurutma Teknigi Calistayi Antalya, 2–4 MayGoogle Scholar
  63. Tavarini S, Degl’innocenti E, Remorini D, Massai R, Guidi L (2008) Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem 107:282–288CrossRefGoogle Scholar
  64. Therdthai N, Zhou W, Pattanapa K (2011) Microwave vacuum drying of osmotically dehydrated mandarin cv. (Sai-Namphaung). Int J Food Sci Technol 46:2401–2407CrossRefGoogle Scholar
  65. Toledo F, Arancibia-Avila P, Park YS, Jung ST, Kang SG, Gu Heo B, Drzewiecki J, Zachwieja Z, Zagrodzki P, Pasko P, Gorinstein PS (2008) Screening of the antioxidant and nutritional properties, phenolic contents and proteins of five durian cultivars. Int J Food Sci Nutr 59:415–427CrossRefGoogle Scholar
  66. Unal HG, Sacilik K (2011) Drying characteristics of hawthorn fruits in a convective hot-air dryer. J Food Process Preserv 35:272–279CrossRefGoogle Scholar
  67. Yi XK, Wu WF, Zhang YQ (2012) Thin-layer drying characteristics and modeling of Chinese jujubes. https://www.hindawi.com/journals/mpe/2012/386214/ (Mathematical Problems in Engineering, Article Number: 386214)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Hakan O. Mengeş
    • 1
  • Ahmet Ünver
    • 2
  • Mehmet Musa Özcan
    • 2
  • Can Ertekin
    • 3
    Email author
  1. 1.Department of Agricultural Machinery, Faculty of AgricultureUniversity of SelçukKonyaTurkey
  2. 2.Department of Food Engineering, Faculty of AgricultureUniversity of SelcukKonyaTurkey
  3. 3.Department of Agricultural Machinery, Faculty of AgricultureUniversity of AkdenizAntalyaTurkey

Personalised recommendations