Preharvest Application Effect of Salicylic Acid and Calcium Nitrate on Physicochemical Characteristics of Fresh Jujube Fruit (Ziziphus jujuba. Mill) During Storage

  • H. Zeraatgar
  • G. H. DavarynejadEmail author
  • F. Moradinezhad
  • B. Abedi
Original Article


The present study was conducted on Chinese jujube (Ziziphus jujuba Mill.) in order to investigate the effects of preharvest application of salicylic acid and calcium nitrate on total soluble solids, titrable acidity, fruit firmness, total soluble solids/titrable acidity, electrolyte leakage, weight loss, pH, fruit length, fruit width, seed length, and seed diameter. Results indicated that salicylic acid and calcium nitrate increased fruit firmness, titrable acidity and reduced total soluble solids/titrable acidity, ion leakage and weight loss, but fruit width was increased only by calcium nitrate and total soluble solids was reduced only by salicylic acid. Fruit length, seed length, seed diameter and pH were not significantly changed. Maximum fruit firmness (4.22 N) was obtained in treatment containing calcium nitrate 2%. Treatment containing salicylic acid 2 mM and calcium nitrate 2% had the highest amount of titrable acidity (0.45 mg/100g FW). The lowest ion leakage (29.26%) and the highest fruit width (16.6 mm), observed in calcium nitrate 2%. Treatment containing salicylic acid 4 mM had the lowest amount of total soluble solids/titrable acidity (57.01) and weight loss (3.78%). The lowest TSS content (23.11%) observed in salicylic acid 4 mM. Based on the results salicylic acid and calcium nitrate played an important role in maintaining and extending post-harvest quality of fresh jujube fruit and could cause at least a 10-day delay in the reduction of the amounts of these attributes.


Agro-chemical substance Cell wall rigidity Fruit texture Ripening process Storage life 

Auswirkung der Vorerntebehandlung mit Salicylsäure und Calciumnitrat auf Frischobst der Chinesischen Jujube (Ziziphus jujuba. Mill) während der Lagerung


Agro-chemischer Wirkstoff Zellwandstabilität Textur der Frucht Reifungsprozess Lagerzeit 


Conflict of interest

H. Zeraatgar, G.H. Davarynejad, F. Moradinezhad and B. Abedi declare that they have no competing interests.


  1. Aghdam MS, Motalleb A, Mostofi Y, Moghaddam JF, Ghasemnezhad M (2010) Effects of MeSA vapor treatment on the postharvest quality of “Hayward” kiwifruit. Acta Hortic 877:743–748CrossRefGoogle Scholar
  2. Aghdam MS, Asghari MR, Moradbeygi H, Mohammadkhani N (2012) Effect of postharvest salicylic acid treatment on reducing chilling injury in tomato fruit. Rom Biotechnol Lett 17(4):7466–7473Google Scholar
  3. Aguayo E, Jansasithorn R, Kader AA (2006) Combined effects of 1‑methylcyclopropene, calcium chloride dip, and/or atmospheric modification on quality changes in fresh-cut strawberries. Postharvest Biol Technol 40(3):269–278CrossRefGoogle Scholar
  4. Al-Obeed RS (2010) Improving fruit quality, marketability and storagability of Barhee date palm. World Appl Sci J 9(6):630–637Google Scholar
  5. Al-Obeed RS (2012) Jujube post-harvest fruit quality and storagability in response to agro-chemicals preharvest application. Afr J Agric Res 7(36):5099–5107Google Scholar
  6. Cao J, Yan J, Zhao Y, Jiang W (2013) Effects of postharvest salicylic acid dipping on Alternaria rot and disease resistance of jujube fruit during storage. J Sci Food Agric 93:3252–3258CrossRefGoogle Scholar
  7. Chen F, Liu H, Yang H, Lai S, Cheng X, Xin Y, Bu G (2011) Quality attributes and cell wall properties of strawberries (Fragaria x ananassa Duch.) under calcium chloride treatment. Food Chem 126(2):450–459CrossRefGoogle Scholar
  8. Cheour F, Willemot C, Arul J, Makhlouf J, Desjardins Y (1991) Postharvest response of two strawberry cultivars to foliar application of CaCl2. HortScience 26(9):1186–1188Google Scholar
  9. Elwan MWM, El-Hamahmy MAM (2009) Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Sci Hortic 122(4):521–526CrossRefGoogle Scholar
  10. Fischer RL, Bennett AB (1991) Role of cell wall hydrolases in fruit ripening. Annu Rev Plant Biol 42(1):675–703CrossRefGoogle Scholar
  11. Gao QH, Wu PT, Liu JR, Wu CS, Parry JW, Wang M (2011) Physico-chemical properties and antioxidant capacity of different jujube (Ziziphus jujuba Mill.) cultivars grown in loess plateau of China. Sci Hortic 130(1):67–72CrossRefGoogle Scholar
  12. Han T, Li LP (1997) Physiological effect of salicylic acid on storage of apple in short period. Plant Physiol Commun 33:347–348Google Scholar
  13. Hernández-Muñoz P, Almenar E, Ocio MJ, Gavara R (2006) Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol Technol 39(3):247–253CrossRefGoogle Scholar
  14. Hubbard NL, Pharr DM, Huber SC (1991) Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species. Physiol Plant 82(2):191–196CrossRefGoogle Scholar
  15. John MA (1987) Fruit softening. In: Prinsley RT, Tucker G (eds) Mangoes a review. The Common wealth Secretariat, London, pp 98–106Google Scholar
  16. Kader A, Heintz C, Chordas A (1982) Postharvest quality of fresh and canned clingstone Peaches as influenced by genotyoes and maturity at harvest. J Am Soc Hortic Sci 107:947–951Google Scholar
  17. Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160(5):485–492CrossRefGoogle Scholar
  18. Kokabi S, Tabatabaei SJ (2011) Effect of different K: Ca ratios on yield and quality of galia (Cucumismelo var. reticulatusl. naud. cv. Galia) grown in hydroponics. J Hortic Sci 25(2):178–184Google Scholar
  19. Lara I, Garcıa P, Vendrell M (2004) Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria× ananassa Duch.) fruit. Postharvest Biol Technol 34(3):331–339CrossRefGoogle Scholar
  20. Leslie CA, Romarini RJ (1988) Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol 88(3):833–837CrossRefGoogle Scholar
  21. Lester GE, Grusak MA (1999) Postharvest application of calcium and magnesium to honeydew and netted muskmelons: effects on tissue ion concentrations, quality and senescence. J Am Soc Hortic Sci 124:545–552Google Scholar
  22. Lester GE, Grusak MA (2004) Field application of chelated calcium: postharvest effects on cantaloupe and honeydew fruit quality. HortTechnology 14(1):29–38Google Scholar
  23. Levy D, Poovaiah BW (1979) Effect of calcium infiltration of senescence of apples. Hortic Sci 14:466–472Google Scholar
  24. Manganaris GA, Vasilakakis M, Diamantidis G, Mignani I (2007) The effect of postharvest calcium application on tissue calcium concentration, quality attributes, incidence of flesh browning and cell wall physicochemical aspects of peach fruits. Food Chemistry 100(4):1385–1392CrossRefGoogle Scholar
  25. Manthe B, Schulz M, Schnabl H (1992) Effects of salicylic acid on growth and stomatal movements of Vicia faba L.: evidence for salicylic acid metabolization. J Chem Ecol 18:1525–1539CrossRefGoogle Scholar
  26. Marzouk HA, Kassem HA (2011) Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci Hortic 130(2):425–430CrossRefGoogle Scholar
  27. Mirdehghan SH, Rahemi M, Martínez-Romero D, Guillén F, Valverde JM, Zapata PJ, Serrano M, Valero D (2007) Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines. Postharvest Biol Technol 44:19–25CrossRefGoogle Scholar
  28. Prasanna V, Prabha TN, Tharanathan RN (2007) Fruit ripening phenomena—an overview. Crit Rev Food Sci Nutr 47(1):1–19CrossRefGoogle Scholar
  29. Rao TR, Gol NB, Shah KK (2011) Effect of postharvest treatments and storage temperatures on the quality and shelf life of sweet pepper (Capsicum annum L.). Sci Hortic 132:18–26CrossRefGoogle Scholar
  30. Reynolds T, Dweck AC (1999) Aloe vera leaf gel: a review update. J Ethnopharmacol 68(1):3–37CrossRefGoogle Scholar
  31. Rizk-Alla MS, Meshreki AM (2006) Effect of pre-harvest application of GA3, potassium and glucose on fruit quality and storability of Crimson Seedless cultivar. Egypt J Basic Appl Sci 20(6A):210–238Google Scholar
  32. Sartip G, Hajilou J (2015) Effect of preharvest application salicylic acid on physicochemical characteristics of apricot (Prunus armeniaca L.) fruits cv. ‘Shamlou’ during storage. J Crop Improv 17(1):81–91Google Scholar
  33. Sayyari M, Babalar M, Kalantari S, Serrano M, Valero D (2009) Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biol Technol 53(3):152–154CrossRefGoogle Scholar
  34. Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, Serrano M, Valero D (2011) Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem 124(3):964–970CrossRefGoogle Scholar
  35. Serrano M, Martı́nez-Romero D, Castillo S, Guillén F, Valero D (2004) Role of calcium and heat treatments in alleviating physiological changes induced by mechanical damage in plum. Postharvest Biol Technol 34(2):155–167CrossRefGoogle Scholar
  36. Shafiee M, Taghavi TS, Babalar M (2010) Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Sci Hortic 124:40–45CrossRefGoogle Scholar
  37. Shokrollahfam S, Hajilou J, Zare F, Tabatabaei SJ, Naghshibandhasani R (2012) Effects of calcium chloride and salicylic acid on quality traits and storage life of plum cultivar. J Food Res 22(1):75–76Google Scholar
  38. Srivastava MK, Dwivedi UN (2000) Delayed ripening of banana fruit by salicylic acid. Plant Sci 158(1):87–96CrossRefGoogle Scholar
  39. Sudha R, Amutha R, Muthulaksmi S, Baby Rani W, Indira K, Mareeswari P (2007) Influence of pre- and post-harvest chemical treatments on physical characteristics of sapota (Achras sapota L.) var. PKM 1. Res J Agric Biol Sci 3(5):450–452Google Scholar
  40. Tian S, Qin G, Xu Y (2005) Synergistic effects of combining biocontrol agents with silicon against postharvest diseases of jujube fruit. J Food Prot 68(3):544–550CrossRefGoogle Scholar
  41. Veltman RH, Kho RM, Van Schaik ACR, Sanders MG, Oosterhaven J (2000) Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs Rocha and Conference) under controlled atmosphere conditions. Postharvest Biol Technol 19(2):129–137CrossRefGoogle Scholar
  42. Vicente AR, Pineda C, Lemoine L, Civello PM, Martinez GA, Chaves AR (2005) UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biol Technol 35(1):69–78CrossRefGoogle Scholar
  43. Wu CS, Gao QH, Guo XD, Yu JG, Wang M (2012) Effect of ripening stage on physicochemical properties and antioxidant profiles of a promising table fruit “pear-jujub” (Zizyphus jujuba Mill.). Sci Hortic 148:177–184CrossRefGoogle Scholar
  44. Zhang Y, Chen K, Zhang S, Ferguson I (2003) The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biol Technol 28(1):67–74CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • H. Zeraatgar
    • 1
  • G. H. Davarynejad
    • 2
    Email author
  • F. Moradinezhad
    • 3
  • B. Abedi
    • 2
  1. 1.Crop and Horticultural Science Research DepartmentSouth Khorasan Agricultural and Natural Resources Research and Education Center, AREEOBirjandIran
  2. 2.Faculty of Horticultural ScienceFerdowsi UniversityMashhadIran
  3. 3.Faculty of Horticultural ScienceBirjand UniversityBirjandIran

Personalised recommendations