Distinct genotypes and phenotypes in European and American strains of Drosophila suzukii: implications for biology and management of an invasive organism

  • Omar Rota-StabelliEmail author
  • Lino Ometto
  • Gabriella Tait
  • Silvia Ghirotto
  • Rupinder Kaur
  • Francesco Drago
  • Josefa González
  • Vaughn M. Walton
  • Gianfranco Anfora
  • Marco Valerio Rossi-Stacconi
Original Paper


A clearer understanding of the structure of pest populations in newly invaded areas is a key step towards their effective management. Here, we use Drosophila suzukii as a model to highlight how populations from separate geographical regions differ in their genetic and phenotypic traits, including those associated with their invasiveness. New X-linked data indicate the presence of at most three D. suzukii genetic clusters in Europe, while North American populations are characterised by a larger genetic diversity. We found a likely new colonisation event from America to Italy and demonstrate that reference genomes from Italian and Californian populations lay in highly distant clusters. Comparative genomics indicate that these two genomes bear the traces of distinct evolutionary forces and are genetically distant, having diversified long ago in their native Asian range. Phenotypic studies further indicate that European and North American populations have differences in hatch rate, generation time, and parasitoid susceptibility. The observed genotypic and phenotypic differences likely represent a small fraction of the features unique to each of the two populations. The results provide some new insights towards both fundamental and management studies on invasive pests, particularly when findings are transferred across populations found in different geographical regions.


Invasive insect Comparative genomics Population genetics Parasitoid Life table Intraspecific variations Drosophila suzukii 


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals (Drosophila fruit flies) were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

10340_2019_1172_MOESM1_ESM.pptx (267 kb)
Supplementary material 1 (PPTX 266 kb)
10340_2019_1172_MOESM2_ESM.docx (46 kb)
Supplementary material 2 (DOCX 45 kb)


  1. Adrion JR, Kousathanas A, Pascual M, Burrack HJ, Haddad NM, Bergland AO, Machado H, Sackton TB, Schlenke TA, Watada M, Wegmann D, Singh ND (2014) Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. Mol Biol Evol 31:3148–3163. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600–1607. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asgari S, Rivers DB (2011) Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Ann Rev Entomol 56:313–335. CrossRefGoogle Scholar
  4. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang ZL, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalá L, Desneux N (2015) Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494. CrossRefGoogle Scholar
  5. Bastian F, Parmentier G, Roux J, Moretti S, Laudet V, Robinson-Rechavi M (2008) Bgee: integrating and comparing heterogeneous transcriptome data among species. In: Lecture notes in computer science, Springer, Berlin, pp 124–131.
  6. Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15. CrossRefGoogle Scholar
  7. Carton Y, Nappi AJ, Poirie M (2005) Genetics of anti-parasite resistance in invertebrates. Develop Comp Immunol 29:9–32. CrossRefGoogle Scholar
  8. Cattel J, Kaur R, Gibert P, Martinez J, Fraimout A, Jiggins F, Andrieux T, Siozios S, Anfora G, Miller W, Rota-Stabelli O, Mouton L (2016a) Wolbachia in European populations of the invasive pest Drosophila suzukii: regional variation in infection frequencies. PLoS ONE 11:e0147766. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cattel J, Martinez J, Jiggins F, Mouton L, Gibert P (2016b) Wolbachia-mediated protection against viruses in the invasive pest Drosophila Suzukii. Insect Mol Biol 25:595–603. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cattel J, Nikolouli K, Andrieux T, Martinez J, Jiggins F, Charlat S, Vavre F, Lejon D, Gibert P, Mouton L (2018) Back and forth Wolbachia transfers reveal efficient strains to control spotted wing drosophila populations. J Appl Ecol 55:2408–2418. CrossRefGoogle Scholar
  11. Cesari M, Maistrello L, Ganzerli F, Dioli P, Rebecchi L, Guidetti R (2014) A pest alien invasion in progress: potential pathways of origin of the brown marmorated stink bug Halyomorpha halys populations in Italy. J Pest Sci 88:1–7. CrossRefGoogle Scholar
  12. Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63:40–47. CrossRefGoogle Scholar
  13. Chiu JC, Jiang X, Zhao L et al (2013) Genome of Drosophila suzukii, the spotted wing drosophila. G3 Genes Genomes Genet 3:2257–2271. CrossRefGoogle Scholar
  14. Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160Google Scholar
  15. Clemente M, Fusco G, Tonina L, Giomi F (2018) Temperature-induced phenotypic plasticity in the ovipositor of the invasive species Drosophila suzukii. J Thermal Biol 75:62–68. CrossRefGoogle Scholar
  16. Colinet D, Deleury E, Anselme C, Cazes D, Poulain J, Azema-Dossat C, Belghazi M, Gatti JL, Poirié M (2013) Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem Mol 43:601–611. CrossRefGoogle Scholar
  17. Daane KM, Wang X, Biondi A, Miller B, Miller JC, Riedl H, Shearer PW, Guerrieri E, Giorgini M, Buffington M, van Achterberg K, Song Y, Kang T, Yi H, Jung C, Lee DW, Chung BK, Hoelmer KA, Walton VM (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J Pest Sci 89:823–835. CrossRefGoogle Scholar
  18. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is There a Genetic Paradox of Biological Invasion? Ann Rev Ecol Syst 47:51–72. CrossRefGoogle Scholar
  20. Fraimout A, Debat V, Fellous S et al (2017) Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fraimout A, Jacquemart P, Villarroel B, Aponte DJ, Decamps T, Herrel A, Cornette R, Debat V (2018) Phenotypic plasticity of Drosophila suzukii wing to developmental temperature: implications for flight. J Exp Biol. CrossRefGoogle Scholar
  22. Gatti J, Schmitz A, Colinet D, Poirié M (2012) Diversity of virus-like particles in parasitoids’ venom. In: Parasitoid viruses, Elsevier, Amsterdam, pp 181–192. CrossRefGoogle Scholar
  23. Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357. CrossRefGoogle Scholar
  24. Haye T, Girod P, Cuthbertson AGS, Wang XG, Daane KM, Hoelmer KA, Baroffio C, Zhang JP, Desneux N (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Science 89:643–651. CrossRefGoogle Scholar
  25. Hickner PV, Rivaldi CL, Johnson CM, Siddappaji M, Raster GJ, Syed Z (2016) The making of a pest: insights from the evolution of chemosensory receptor families in a pestiferous and invasive fly, Drosophila suzukii. BMC Genom. CrossRefGoogle Scholar
  26. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405CrossRefGoogle Scholar
  27. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kacsoh BZ, Schlenke TA (2012) High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS ONE 7:e34721. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kanno Y, Vokoun JC, Letcher BH (2011) Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol 20:3711–3729CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kaur R, Siozios S, Miller WJ, Rota-Stabelli O (2017) Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci Rep UK. CrossRefGoogle Scholar
  31. Keightley PD, Ness RW, Halligan DL, Haddrill PR (2013) Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 196:313–320. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Komljenovic A, Roux J, Wollbrett J, Robinson-Rechavi M, Bastian FB (2018) BgeeDB, an R package for retrieval of curated expression datasets and for gene list expression localization enrichment tests. F1000Research 5:2748. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kraaijeveld AR, Godfray HCJ (2003) Potential life-history costs of parasitoid avoidance in Drosophila melanogaster. Evol Ecol Res 5:1251–1261Google Scholar
  34. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. CrossRefGoogle Scholar
  35. Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann Rev Entomol 52:231–253. CrossRefGoogle Scholar
  36. Miller B, Anfora G, Buffington M, Daane KM, Dalton DT, Hoelmer KM, Rossi Stacconi MV, Grassi A, Ioriatti C, Loni A, Miller JC, Ouantar M, Wang X, Wiman NG, Walton VM (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. Bull Insectol 68(2):255–263Google Scholar
  37. Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses of flower- and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomol Sci 13:60–67. CrossRefGoogle Scholar
  38. Ometto L, Cestaro A, Ramasamy S et al (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pajač Živković I, Lemic D, Mešić A, Barić B, Órdenes R, Benítez HA (2018) Effect of fruit host on wing morphology in Drosophila suzukii (Diptera: Drosophilidae): A first view using geometric morphometrics. Entomol Res 48:262–268. CrossRefGoogle Scholar
  40. Ramasamy S, Ometto L, Crava MC et al (2016) The evolution of olfactory gene families in Drosophila and the genomic basis of chemical-ecological adaptation in Drosophila suzukii. Genome Biol Evol 8:2297–2311. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Reichard M, Douda K, Przybyłski M, Popa OP, Karbanová E, Matasová K, Smith C (2015) Population-specific responses to an invasive species. P R Soc B-Biol Sci 282:1063Google Scholar
  42. Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242. CrossRefGoogle Scholar
  43. Rivero A, Vézilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLoS Pathogens 6:e1001000. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rossi Stacconi MV, Kaur R, Mazzoni V, Ometto L, Grassi A, Gottardello A, Rota-Stabelli O, Anfora G (2016) Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: useful clues for control strategies. J Pest Sci 89:689–700. CrossRefGoogle Scholar
  45. Rossi Stacconi MV, Panel A, Baser N, Ioriatti C, Pantezzi T, Anfora G (2017) Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol Control 112:20–27. CrossRefGoogle Scholar
  46. Rossi Stacconi MV, Amiresmaeili N, Biondi A et al (2018) Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol Control 117:188–196. CrossRefGoogle Scholar
  47. Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:392–398. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol 16(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  49. Silva AX, Jander G, Samaniego H, Ramsey JS, Figueroa CC (2012) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS ONE 7:e36366. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Strand MR (2012) Polydnavirus gene products that interact with the host immune system. In: Parasitoid viruses, Elsevier, Amsterdam, pp 149–161. CrossRefGoogle Scholar
  51. Tait G, Grassi A, Pfab F et al (2018) Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy. J Pest Sci 91:1213–1224. CrossRefGoogle Scholar
  52. Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510. CrossRefGoogle Scholar
  53. Van Damme V, Berkvens N, Moerkens R, Berckmoes E, Wittemans L, De Vis R, Casteels H, Tirry L, De Clercq P (2014) Overwintering potential of the invasive leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) as a pest in greenhouse tomato production in Western Europe. J Pest Sci 88:533–541. CrossRefGoogle Scholar
  54. Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Rossi Stacconi MV, Shearer PW, Tanigoshi L, Wang X, Walton VM (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci 89:653–665CrossRefGoogle Scholar
  55. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573. CrossRefGoogle Scholar
  56. Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. CrossRefGoogle Scholar
  57. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43. CrossRefGoogle Scholar
  58. Yang Z, Nielsen R, Goldman N, Krabbe Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedPubMedCentralGoogle Scholar
  59. Zalewski A, Zalewska H, Lunneryd SG, André C, Mikusiński G (2016) Reduced genetic diversity and increased structure in American mink on the Swedish coast following invasive species control. PLoS ONE 11(6):e0157972CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Omar Rota-Stabelli
    • 1
    Email author
  • Lino Ometto
    • 1
    • 2
  • Gabriella Tait
    • 1
  • Silvia Ghirotto
    • 3
  • Rupinder Kaur
    • 1
    • 4
  • Francesco Drago
    • 1
  • Josefa González
    • 5
  • Vaughn M. Walton
    • 6
  • Gianfranco Anfora
    • 1
    • 7
  • Marco Valerio Rossi-Stacconi
    • 1
    • 6
  1. 1.Research and Innovation CentreFondazione Edmund Mach (FEM)San Michele all’AdigeItaly
  2. 2.Dipartimento di Biologia e Biotecnologie “L. Spallanzani”University of PaviaPaviaItaly
  3. 3.Dipartimento di Scienze della vita e BiotecnologieUniversity of FerraraFerraraItaly
  4. 4.Instituto Gulbenkian de CiênciaOeirasPortugal
  5. 5.Institute of Evolutionary BiologyCSIC-Universitat Pompeu FabraBarcelonaSpain
  6. 6.Department of HorticultureOregon State UniversityCorvallisUSA
  7. 7.Centre Agriculture Food Environment (C3A)University of TrentoSan Michele all’AdigeItaly

Personalised recommendations