Genetics of Thrips palmi (Thysanoptera: Thripidae)

  • Amalendu Ghosh
  • Shounak S. Jagdale
  • Basavaraj
  • Ralf G. DietzgenEmail author
  • Rakesh Kumar Jain


Melon thrips (Thrips palmi) is the principal insect pest of vegetable and ornamental plants worldwide. In addition to inflicting feeding injuries on host plants, they act as vectors of economically damaging tospoviruses. Application of insecticides and host plant resistance has proven largely ineffective in the management of T. palmi. However, increasingly, genetic knowledge is being successfully utilized to manage insect pests. A number of recent studies have enriched the genetic database of T. palmi. In this review, we report on genetics of T. palmi for species identification and to study its populations structure. For example, a DNA polymorphism analysis of global T. palmi populations has revealed the existence of 29 haplotypes. The T. palmi population can be divided into three lineages based on phylogenetic analysis. A high maximum intraspecific distance is indicative of cryptic species within T. palmi populations. Regarding climate adaptability, the upregulation of trehalose biosynthesis genes, and genes encoding several heat-shock proteins is expected to enable T. palmi thermal adaptation to both cold and hot conditions. Genetics of T. palmi has shown that resistance to conventional insecticides like cypermethrin appears to be linked to mutations in the sodium channel. On the other hand, resistance to imidacloprid appears to be a result of cytochrome P450-mediated detoxification. T. palmi genes potentially involved in tospovirus transmission are also reviewed and new molecular tools for genetic study presented. Molecular modeling and docking analyses of groundnut bud necrosis virus glycoprotein demonstrated protein–protein interactions with T. palmi vacuolar ATP synthase E subunit, cathepsin, clathrin, adaptor protein 2, and enolase. Overall, a better knowledge of T. palmi genes will assist elucidation of thrips identification, means of adaptation in diverse ecological niches, mechanisms of insecticide resistance, and transmission of plant viruses. This data will be an invaluable tool for integrated thrips management.


Melon thrips Haplotype Identification Adaptation Insecticide resistance Tospovirus transmission 



The support received from Indian Agricultural Research Institute, DBT (BT/PR26136/AGIII/103/1005/2018) and Savitribai Phule Pune University is thankfully acknowledged. This research was also jointly supported by the Queensland Department of Agriculture and Fisheries and the University of Queensland through the Queensland Alliance for Agriculture and Food Innovation.


No specific grant funding was received for this study.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abudurexiti A, Adkins S, Alioto D et al (2019) Taxonomy of the order Bunyavirales: update 2019. Arch Virol 164:1949–1965CrossRefPubMedGoogle Scholar
  2. Albornoz A, Hoffmann AB, Lozach PY, Tischler ND (2016) Early bunyavirus-host cell interactions. Viruses 8:143. CrossRefPubMedCentralGoogle Scholar
  3. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355CrossRefGoogle Scholar
  4. Ammar ED, Hogenhout SA (2008) A neurotropic route for Maize mosaic virus (Rhabdoviridae) in its planthopper vector Peregrinus maidis. Virus Res 131:77–85CrossRefGoogle Scholar
  5. Asokan R, Krishna Kumar NK, Kumar V, Ranganath HR (2007) Molecular differences in the mitochondrial cytochrome oxidase I (mtCOI) gene and development of a species-specific marker for onion thrips, Thrips tabaci Lindeman, and melon thrips, T. palmi Karny (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyaviridae). Bull Entomol Res 97:461–470CrossRefPubMedGoogle Scholar
  6. Badillo-Vargas IE, Rotenberg D, Schneweis DJ, Hiromasa Y, Tomich JM, Whitfield AE (2012) Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to tomato spotted wilt virus infection. J Virol 86:8793–8809CrossRefPubMedPubMedCentralGoogle Scholar
  7. Badillo-Vargas IE, Rotenberg D, Schneweiss DJ, Whitfield AE (2015) RNA interference tools for the western flower thrips, Frankliniella occidentalis. J Insect Physiol 76:36–46CrossRefPubMedGoogle Scholar
  8. Banks JN, Collins DW, Rizvi RH, Northway BJ, Danks C (1998) Production and characterization of monoclonal antibodies against the EU-listed pest Thrips palmi. Food Agric Immunol 10:281–290CrossRefGoogle Scholar
  9. Bao WX, Sonoda S (2012) Resistance to cypermethrin in melon thrips, Thrips palmi (Thysanoptera: Thripidae), is conferred by reduced sensitivity of the sodium channel and CYP450-mediated detoxification. Appl Entomol Zool 47:443–448CrossRefGoogle Scholar
  10. Bao WX, Narai Y, Nakano A, Kaneda T, Murai T, Sonoda S (2014) Spinosad resistance of melon thrips, Thrips palmi, is conferred by G275E mutation in α6 subunit of nicotinic acetylcholine receptor and cytochrome P450 detoxification. Pest Biochem Physiol 112:51–55CrossRefGoogle Scholar
  11. Bao WX, Kataoka Y, Fukada K, Sonoda S (2015) Imidacloprid resistance of melon thrips, Thrips palmi is conferred by CYP450-mediated detoxification. J Pest Sci 40:65–68CrossRefGoogle Scholar
  12. Bao H, Gao H, Zhang Y, Fan D, Fang J, Liu Z (2016) The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: expression levels and detoxification efficiency. Pest Biochem Physiol 129:70–74CrossRefGoogle Scholar
  13. Bass C, Puinean AM, Andrews M et al (2011) Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci 12:51CrossRefPubMedPubMedCentralGoogle Scholar
  14. Baxter SW, Chen M, Dawson A et al (2010) Mis-spliced transcripts of nicotinic acetylcholine receptor α6 are associated with field evolved spinosad resistance in Plutella xylostella (L.). PLoS Genet 6:e1000802CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bayar K, Törjék O, Kiss E, Gyulai G, Heszky L (2002) Intra- and interspecific molecular polymorphism of thrips species. Acta Biol Hung 53:317–324CrossRefPubMedGoogle Scholar
  16. Brunner PC, Fleming C, Frey JE (2002) A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR-RFLP-based approach. Agric Forest Entomol 4:127–136CrossRefGoogle Scholar
  17. Brunner PC, Chatzivassiliou EK, Katis NI, Frey JE (2004) Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity 93:364–370CrossRefPubMedGoogle Scholar
  18. Buckingham S, Lapied B, Corronc H, Sattelle F (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200:2685–2692PubMedGoogle Scholar
  19. Buckman RS, Mound LA, Whiting MF (2013) Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Syst Entomol 38:123–133CrossRefGoogle Scholar
  20. Cannon RJC, Matthews L, Collins DW (2007) A review of the pest status and control options for Thrips palmi. Crop Protect 26:1089–1098CrossRefGoogle Scholar
  21. Chen CC, Chen TC, Lin YH, Yeh SD, Hsu HT (2005) A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to watermelon silver mottle virus. Plant Dis 89:440–445CrossRefPubMedGoogle Scholar
  22. Chen WT, Tseng CH, Tsai CW (2014) Effect of watermelon silver mottle virus on the life history and feeding preference of Thrips palmi. PLoS ONE 9:e102021CrossRefPubMedPubMedCentralGoogle Scholar
  23. Childers CC (1997) Feeding and oviposition injuries to plants. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, pp 505–537Google Scholar
  24. Crespi BJ, Carmean DA, Mound LA, Worobey M, Morris D (1998) Phylogenetics of social behavior in Australian gall-forming thrips: evidence from mitochondrial DNA sequence, adult morphology and behavior, and gall morphology. Mol Phylogenet Evol 9:163–180CrossRefPubMedGoogle Scholar
  25. Daborn P, Boundy S, Yen J, Pittendrigh B, Ffrench-Constant R (2001) DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Genet Genomics 266:556–563CrossRefPubMedGoogle Scholar
  26. Daimei G, Raina HS, Devi PP et al (2017) Influence of groundnut bud necrosis virus on the life history traits and feeding preference of its vector, Thrips palmi. Phytopathol 107:1440–1445CrossRefGoogle Scholar
  27. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol 3:294–299PubMedGoogle Scholar
  28. Forcioli D, Frey B, Frey JE (2002) High nucleotide diversity in the para-like voltage-sensitive sodium channel gene sequence in the western flower thrips (Thysanoptera: Thripidae). J Econ Entomol 95:838–848CrossRefPubMedGoogle Scholar
  29. Ghosh A, Chatterjee ML, Chakraborti K, Samanta A (2009) Field evaluation of insecticides against chilli thrips (Scirtothrips dosrsalis Hood). Ann Plant Protect Sci 17:69–71Google Scholar
  30. Ghosh A, Dey D, Timmanna, Basavaraj, Mandal B, Jain RK (2017) Thrips as the vectors of tospoviruses in Indian agriculture. In: Mandal B, Rao GP, Baranwal VK, Jain RK (eds) A century of plant virology in India. Springer, Singapore, pp 537–556CrossRefGoogle Scholar
  31. Ghosh A, Basavaraj YB, Jangra S, Das A (2019) Exposure to watermelon bud necrosis virus and groundnut bud necrosis virus alters the life history traits of their vector, Thrips palmi (Thysanoptera: Thripidae). Arch Virol. CrossRefPubMedGoogle Scholar
  32. Glover RH, Collins DW, Walsh K, Boonham N (2010) Assessment of loci for DNA barcoding in the genus Thrips (Thysanoptera:Thripidae). Mol Ecol Resources 10:51–59CrossRefGoogle Scholar
  33. Grimmelikhuijzen CJ, Cazzamali G, Williamson M, Hauser F (2007) The promise of insect genomics. Pest Manag Sci 63:413–416CrossRefPubMedGoogle Scholar
  34. Grutter T, Changeux JP (2001) Nicotinic receptors in wonderland. Trends Biochem Sci 26:459–463CrossRefPubMedGoogle Scholar
  35. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321CrossRefGoogle Scholar
  36. Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B Biol Sci 270:96–99Google Scholar
  37. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817CrossRefPubMedGoogle Scholar
  38. Hoddle MS, Heraty JM, Rugman-Jones PF, Mound LA, Stouthamer R (2009) Relationships among species of Scirtothrips (Thysanoptera: Thripidae, Thripinae) using molecular and morphological data. Ann Entomol Soc Am 101:491–500CrossRefGoogle Scholar
  39. Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S (2013) Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol 87:4384–4394CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hsu JC, Feng HT, Wu WJ, Geib SM, Mao C, Vontas J (2012) Truncated transcripts of nicotinic acetylcholine subunit gene Bdα6 are associated with spinosad resistance in Bactrocera dorsalis. Insect Biochem Mol Biol 42:806–815CrossRefPubMedGoogle Scholar
  41. Iftikhar R, Ashfaq M, Rasool A, Hebert PDN (2016) DNA barcode analysis of thrips (Thysanoptera) diversity in Pakistan reveals cryptic species complexes. PLoS ONE 11:e0146014CrossRefPubMedPubMedCentralGoogle Scholar
  42. Inoue T, Sakurai T (2007) The phylogeny of thrips (Thysanoptera: Thripidae) based on partial sequences of cytochrome oxidase I, 28S ribosomal DNA and elongation factor-1alpha and the association with vector competence of tospoviruses. Appl Entomol Zool 42:71–81CrossRefGoogle Scholar
  43. Jagdale S, Ghosh A (2019) In silico analyses of molecular interactions between groundnut bud necrosis virus and its vector, Thrips palmi. VirusDisease 30:245–251CrossRefPubMedGoogle Scholar
  44. Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol 113:119–157CrossRefGoogle Scholar
  45. Jones G, Sharp PA (1997) Ultraspiracle: An invertebrate nuclear receptor for juvenile hormones. Proc Nat Acad Sci USA 94:13499–13503CrossRefPubMedGoogle Scholar
  46. Kain DE, Sperling FAH, Daly HV, Lane RS (1999) Mitochondrial DNA sequence variation in Ixodes pacificus (Acari: Ixodidae). Heredity 83:378–386CrossRefPubMedGoogle Scholar
  47. Kato K, Handa K, Kameya-Iwaki M (2000) Melon yellow spot virus: a distinct species of the genus Tospovirus isolated from melon. Phytopathol 90:422–426CrossRefGoogle Scholar
  48. Koo HN, An JJ, Park SE, Il Kim J, Kim GH (2014) Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Protect 55:91–97CrossRefGoogle Scholar
  49. Kox LFF, Van Den Beld HE, Zijlstra C, Vierbergen G (2005) Real-time PCR assay for the identification of Thrips palmi. EPPO Bull 35:141–148CrossRefGoogle Scholar
  50. Lee Y, Lee W, Kanturski M, Foottit RG, Akimoto S-I, Lee S (2017) Cryptic diversity of the subfamily Calaphidinae (Hemiptera: Aphididae) revealed by comprehensive DNA barcoding. PLoS ONE 12:e0176582CrossRefPubMedPubMedCentralGoogle Scholar
  51. Leigh JW, Bryant D (2015) POPART: Full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116CrossRefGoogle Scholar
  52. Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS (2005) From the cover: a nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Nat Acad Sci USA 102:8420–8425CrossRefPubMedGoogle Scholar
  53. Löber C, Anheier B, Lindow S, Klenk HD, Feldmann H (2001) The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology 289:224–229CrossRefPubMedGoogle Scholar
  54. Lu MX, Li HB, Zheng YT, Shi L, Du YZ (2016) Identification, genomic organization and expression profiles of four heat shock protein genes in the western flower thrips, Frankliniella occidentalis. J Therm Biol 57:110–118CrossRefPubMedGoogle Scholar
  55. Matsuo Y (2000) Molecular evolution of the histone 3 multigene family in the Drosophila melanogaster species subgroup. Mol Phylogenet Evol 16:339–343CrossRefPubMedGoogle Scholar
  56. McMichael LA, Persley DM, Thomas JE (2002) A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Australas Plant Pathol 31:231–239CrossRefGoogle Scholar
  57. Melon thrips-Thrips palmi Karny (2018). Accessed 27 April 2018
  58. Melon yellow spot virus (MYSVV0) (2019) In: EPPO global database. Accessed 19 August 2019
  59. Millar NS, Denholm I (2007) Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invertebr Neurosci 7:53–66CrossRefGoogle Scholar
  60. Misof B, Liu S, Meusemann K et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767CrossRefPubMedGoogle Scholar
  61. Miyazaki M, Ohyama K, Dunlap D, Matsumura F (1996) Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol Gen Genet 252:61–68PubMedGoogle Scholar
  62. Mouden S, Sarmiento KF, Klinkhamer PG, Leiss KA (2017) Integrated pest management in western flower thrips: past, present and future. Pest Manag Sci 73:813–822CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nakahara S, Minoura K (2015) Identification of four thrips species (Thysanoptera: Thripidae) by multiplex polymerase chain reaction. Res Bull Plant Prot Serv Jpn 42:37–42Google Scholar
  64. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993CrossRefPubMedGoogle Scholar
  65. Park CG, Kim HY, Lee JH (2010) Parameter estimation for a temperature-dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J Asia Pacific Entomol 13:145–149CrossRefGoogle Scholar
  66. Park Y, Kim K, Kim Y (2014) Rapid cold hardening of Thrips palmi (Thysanoptera: Thripidae). Environ Entomol 43:1076–1083CrossRefPubMedGoogle Scholar
  67. Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  68. Przybylska A, Fiedler Ż, Kucharczyk H, Obrępalska-Stęplowska A (2015) Detection of the quarantine species Thrips palmi by loop-mediated isothermal amplification. PLoS ONE 10:e0122033CrossRefPubMedPubMedCentralGoogle Scholar
  69. Przybylska A, Fiedler Ż, Frąckowiak P, Obrępalska-Stęplowska A (2017) Real-time PCR assay for distinguishing Frankliniella occidentalis and Thrips palmi. Bull Entomol Res 108:413–420CrossRefPubMedGoogle Scholar
  70. Puangmalai P, Potapohn N, Akarapisarn A, Jan Pascha H (2013) Inheritance of tomato necrotic ring virus resistance in Capsicum annuum. J Agric Sci 5:129–133Google Scholar
  71. Puinean AM, Lansdell SJ, Collins T, Bielza P, Millar NS (2013) A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis. J Neurochem 124:590–601CrossRefPubMedPubMedCentralGoogle Scholar
  72. Qin J, Gao P, Zhang XX, Lu MX, Du YZ (2018) Characterization of two novel heat shock protein 70s and their transcriptional expression patterns in response to thermal stress in adult of Frankliniella occidentalis (Thysanoptera: Thripidae). J Integr Agric 17:1023–1031CrossRefGoogle Scholar
  73. Rajulu GS, Gowri N (1988) A comparative study of the chorion of the DDT-resistant and susceptible strains of Thrips palmi Karny. Acta Phytopathol Entomol Hungarica 23:331–341Google Scholar
  74. Ravi KS, Buttgereitt A, Kitkaru AS, Deshmukh S, Lesemann DE, Winter S (2001) Sunflower necrosis disease from India is caused by an ilarvirus related to tobacco streak virus. Plant Pathol 50:800CrossRefGoogle Scholar
  75. Rebijith KB, Asokan R, Kumar NK, Krishna V, Ramamurthy VV (2012) Development of species-specific markers and molecular differences in mtDNA of Thrips palmi Karny and Scirtothrips dorsalis Hood (Thripidae: Thysanoptera), vectors of tospoviruses (Bunyaviridae) in India. Entomol News 122:201–213CrossRefGoogle Scholar
  76. Rebijith KB, Asokan R, Krishna V, Ranjitha HH, Krishna Kumar NK, Ramamurthy VV (2014) DNA barcoding and elucidation of cryptic diversity in thrips (Thysanoptera). Florida Entomol 97:1328–1347CrossRefGoogle Scholar
  77. Rebijith KB, Asokan R, Hande R, Krishna Kumar NK (2016) The first report of miRNAs from a thysanopteran insect, Thrips palmi Karny using high-throughput sequencing. PLoS ONE 11:e0163635CrossRefPubMedPubMedCentralGoogle Scholar
  78. Reddy DVR, Ratna AS, Sudarshana MR, Poul F, Kumar IK (1992) Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. Ann Appl Biol 120:279–286CrossRefGoogle Scholar
  79. Reddy DVR, Buiel AAM, Satyanarayana T, Dwivedi SL, Reddy AS, Ratna AS, Vijaylakshmi K, Ranga Rao GV, Naidu RA, Wightman JA (1995) Peanut budnecrosis virus disease: an overview. In: Buiel AAM, Parevliet JE, Lenne JM (eds) Recent studies on peanut bud necrosis disease: proceedings of a meeting, 20 March. International Crop Research Institute for Semi-Arid Tropics, India, pp 3–7Google Scholar
  80. Roditakis E, Morou E, Tsagkarakou A et al (2011) Assessment of the Bemisia tabaci CYP6CM1vQ transcript and protein levels in laboratory and field-derived imidacloprid-resistant insects and cross-metabolism potential of the recombinant enzyme. Insect Sci 18:23–29CrossRefGoogle Scholar
  81. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302CrossRefPubMedGoogle Scholar
  82. Salgado VL (1998) Studies on the mode of action of Spinosad: insect symptoms and physiological correlates. Pest Biochem Physiol 60:91–102CrossRefGoogle Scholar
  83. Sartiami D, Mound LA (2013) Identification of the terebrantian thrips (Insecta, Thysanoptera) associated with cultivated plants in Java, Indonesia. Zookeys 306:1–21CrossRefGoogle Scholar
  84. Schneweis DJ, Whitfield AE, Rotenberg D (2017) Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Virology 500:226–237CrossRefPubMedGoogle Scholar
  85. Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, Duce IR, Williamson MS (1998) Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pest Biochem Physiol 59:169–182CrossRefGoogle Scholar
  86. Scott JG (1998) Toxicity of spinosad to susceptible and resistant strains of house flies, Musca domestica. Pesticide Sci 54:131–133CrossRefGoogle Scholar
  87. Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777CrossRefPubMedGoogle Scholar
  88. Seepiban C, Gajanandana O, Attathom T, Attathom S (2011) Tomato necrotic ringspot virus, a new tospovirus isolated in Thailand. Arch Virol 156:263–274CrossRefPubMedGoogle Scholar
  89. Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20:362–370CrossRefPubMedGoogle Scholar
  90. Sherwood J, German TL, Moyer JW, Ullman DE (2003) Tomato spotted wilt virus. Plant Health Instr. CrossRefGoogle Scholar
  91. Singh SJ, Krishnareddy M (1996) Watermelon bud necrosis: a new tospovirus disease. Acta Hort 431:68–77CrossRefGoogle Scholar
  92. Singh AB, Srivatava SK (1995) Status and control strategy of peanut bud necrosis disease in Uttar Pradesh. In: Buiel AAM, Parevliet JE, Lenne JM (eds) Recent studies on peanut bud necrosis disease: peanut bud necrosis virus disease: an overview. Proceedings of a meeting, 20 March. International Crop Research Institute for Semi-Arid Tropics, India, pp 65–68Google Scholar
  93. Singh RB, Srivastava KK, Khurana SMP, Pandey SK (1997) Assessment of yield losses due to potato stem necrosis disease. Indian J Virol 3:135–137Google Scholar
  94. Soderlund DM, Clark JM, Sheets LP et al (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59CrossRefGoogle Scholar
  95. Stafford-Banks CA, Rotenberg D, Johnson BR, Whitfield AE, Ullman DE (2014) Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS ONE 9:e94447CrossRefPubMedPubMedCentralGoogle Scholar
  96. Thompson SN (2003) Trehalose—the insect “blood” sugar. In: Simpson S (ed) Advances in insect physiology. Academic Press, Cambridge, pp 205–285Google Scholar
  97. Tobacco streak virus (2001) In: Descriptions of plant viruses No. 381.
  98. Toda S, Morishita M (2009) Identification of three point mutations on the sodium channel gene in pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae). J Econ Entomol 102:2296–2300CrossRefPubMedGoogle Scholar
  99. Tomato spotted wilt virus (TSWV00) (2019) In: EPPO global database. Acessed 19 August 2019
  100. Tsukahara Y, Sonoda S, Fujiwara Y, Nakasuji F, Tsumuki H (2003) Molecular analysis of the para-sodium channel gene in the pyrethroid-resistant diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Appl Entomol Zool 38:23–29CrossRefGoogle Scholar
  101. Tyagi K, Kumar V, Singha D et al (2017) DNA barcoding studies on thrips in India: cryptic species and species complexes. Sci Rep 7:1–14CrossRefGoogle Scholar
  102. Unruh CM, Gullan PJ (2008) Molecular data reveal convergent reproductive strategies in iceryine scale insects (Hemiptera: Coccoidea: Monophlebidae), allowing the re-interpretation of morphology and a revised generic classification. Syst Entomol 33:8–50CrossRefGoogle Scholar
  103. Vogler AP, Welsh A (1997) Phylogeny of North American Cicindela tiger beetles inferred from multiple mitochondrial DNA sequences. Mol Phylogenet Evol 8:225–235CrossRefPubMedGoogle Scholar
  104. Walsh K, Boonham N, Barker I, Collins DW (2005) Development of a sequence-specific real-time PCR to the melon thrips Thrips palmi (Thysanoptera, Thripidae). J Appl Entomol 129:272–279CrossRefGoogle Scholar
  105. Wang D, Qiu X, Ren X, Niu F, Wang K (2009) Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Biochem Physiol 95:90–94CrossRefGoogle Scholar
  106. Wang H, Reitz SR, Wang L, Wang S, Xue LI, Lei Z (2014) The mRNA expression profiles of five heat shock protein genes from Frankliniella occidentalis at different stages and their responses to temperatures and insecticides. J Integr Agric 13:2196–2210CrossRefGoogle Scholar
  107. Watson GB (2001) Actions of insecticidal spinosyns on γ-aminobutyric acid responses from small-diameter cockroach neurons. Pest Biochem Physiol 71:20–28CrossRefGoogle Scholar
  108. Whitten MM, Facey PD, Del Sol R et al (2016) Symbiont-mediated RNA interference in insects. Proc R Soc B 283:20160042CrossRefPubMedGoogle Scholar
  109. Widana Gamage SMK, Rotenberg D, Schneweis DJ, Tsai C-W, Dietzgen RG (2018) Transcriptome-wide responses of adult melon thrips (Thrips palmi) associated with capsicum chlorosis virus infection. PLoS ONE 13:e0208538CrossRefPubMedPubMedCentralGoogle Scholar
  110. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL (1996) Identification of mutations in the houseflypara-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Genet Genomics 252:51–60CrossRefGoogle Scholar
  111. Yadav R, Chang NT (2012) Temperature-dependent development and life table parameters of Thrips palmi (Thysanoptera: Thripidae) on eggplant. Appl Entomol Zool 47:301–310CrossRefGoogle Scholar
  112. Yeh SD, Chang TF (1995) Nucleotide sequence of the N gene of watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85:58–64CrossRefGoogle Scholar
  113. Yeh WB, Tseng MJ, Chang NT, Wu SY, Tsai YS (2014) Agronomically important thrips: development of species-specific primers in multiplex PCR and microarray assay using internal transcribed spacer 1 (ITS1) sequences for identification. Bull Entomol Res 105:52–59CrossRefPubMedGoogle Scholar
  114. Zhang SY, Kono S, Murai T, Miyata T (2008) Mechanisms of resistance to spinosad in the western flower thrip, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Insect Sci 15:125–132CrossRefGoogle Scholar
  115. Zhang Z, Zhang P, Li W, Zhang J, Huang F, Yang J, Bei Y, Lu Y (2013) De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance. Genomics 101:296–305CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Insect Vector Laboratory, Advanced Centre for Plant VirologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Institute of Bioinformatics and BiotechnologySavitribai Phule Pune UniversityPuneIndia
  3. 3.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandSt. LuciaAustralia

Personalised recommendations