Journal of Pest Science

, Volume 93, Issue 1, pp 11–25 | Cite as

Invasion history and management of Eucalyptus snout beetles in the Gonipterus scutellatus species complex

  • Michelle L. SchröderEmail author
  • Bernard Slippers
  • Michael J. Wingfield
  • Brett P. Hurley


Gonipterus scutellatus (Coleoptera: Curculionidae), once thought to be a single species, is now known to reside in a complex of at least eight cryptic species. Two of these species (G. platensis and G. pulverulentus) and an undescribed species (Gonipterus sp. n. 2) are invasive pests on five continents. A single population of Anaphes nitens, an egg parasitoid, has been used to control all three species of Gonipterus throughout the invaded range. Limited knowledge regarding the different cryptic species and their diversity significantly impedes efforts to manage the pest complex outside the native range. In this review, we consider the invasion and taxonomic history of the G. scutellatus cryptic species complex and the implications that the cryptic species diversity could have on management strategies. The ecological and biological aspects of these pests that require further research are identified. Strategies that could be used to develop an ecological approach towards managing the G. scutellatus species complex are also suggested.


Gonipterus scutellatus Cryptic species Invasion history Biological control Anaphes nitens Eucalyptus snout beetle 



We thank the University of Pretoria (UP), Members of the Tree Protection Co-operative Programme (TPCP) and the Department of Science and Technology—Sector-Specific Innovation Fund (DST-SIF) for financial support.


This study was funded by Tree Protection Co-operative Programme (TPCP) and the Department of Science and Technology—Sector-Specific Innovation Fund (DST-SIF).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain experiments with human participants or animals performed by any of the authors.


  1. Agrawal AA, Karban R, Colfer RG (2000) How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos 89:70–80CrossRefGoogle Scholar
  2. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  3. Andrew RL, Peakall R, Wallis IR, Wood JT, Knight EJ, Foley WJ (2005) Marker-based quantitative genetics in the wild? The heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrew RL, Wallis IR, Harwood CE, Henson M, Foley WJ (2007) Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901CrossRefPubMedGoogle Scholar
  5. Atkinson PR (1999) Eucalyptus snout beetle, Gonipterus scutellatus Gyll., and its control in South Africa through biological, cultural and chemical means. ICFR Bulletin. Accessed 9 Nov 2018
  6. Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messean A, Moonen A, Ratnadass A, Ricci P, Sara J-L, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35:119–1215CrossRefGoogle Scholar
  7. Beard JJ (1999) Taxonomy and biological control: Neoseiulus cucumeris (Acari: Phytoseiidae), a case study. Aust Entomol 38:51–59CrossRefGoogle Scholar
  8. Beéche Cisternas MA, Rothmann ST (2000) Detection and control of the Gum Tree Weevil Gonipterus scutellatus in Chile (Coleoptera: Curculionidae). Paper presented at the international congress of entomology XXI Brazil, 20–26 AugGoogle Scholar
  9. Bennett BM (2011) A global history of australian trees. J Hist Biol 44:125–145CrossRefPubMedGoogle Scholar
  10. Berkov A (2002) The impact of redefined species limits in Palame (Coleoptera: Cerambycidae: Lamiinae: Acanthocinini) on assessments of host, seasonal, and stratum specificity. Biol J Linn Soc Lond 76:195–209CrossRefGoogle Scholar
  11. Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2008) DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservación Guanacaste, Costa Rica. Proc Natl Acad Sci USA 105:6350–6355CrossRefPubMedGoogle Scholar
  12. Cadahia D (1980) Proximidad de dos nuevos enemigos de los Eucalyptus en España. Bol Serv Plagas 6:165–192Google Scholar
  13. Cadahia D (1986) Importance des insectes ravageurs de l’eucalyptus en région méditerranéenne. EPPO Bull 16:265–283CrossRefGoogle Scholar
  14. Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58CrossRefPubMedGoogle Scholar
  15. Ciesla WM (1991) Cypress aphid: a new threat to Africa’s forests. Accessed 22 Aug
  16. Clark AF (1931) The parasite control of Gonipterus scutellatus Gyll. New Zea J Sci Technol 13:22–28Google Scholar
  17. Clark AF (1937) A survey of the insect pests of Eucalyptus in New Zealand. New Zea J Sci Technol 19:750–761Google Scholar
  18. Clarke AR (1990) The control of Nezara viridula L. with introduced egg parasitoids in Australia. A review of a ‘landmark’ example of classical biological control. Aust J Agric Res 41:1127–1146CrossRefGoogle Scholar
  19. Clarke AR, Paterson S, Pennington P (1998) Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) oviposition on seven naturally co-occurring Eucalyptus species. For Ecol Manag 110:89–99CrossRefGoogle Scholar
  20. Clissold FJ, Sanson GD, Read J, Simpson SJ (2009) Gross vs. net income: how plant toughness affects performance of an insect herbivore. Ecology 90:3393–3405CrossRefPubMedGoogle Scholar
  21. Cloyd RA, Bethke JA (2011) Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manag Sci 67:3–9CrossRefPubMedGoogle Scholar
  22. Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733CrossRefGoogle Scholar
  23. Cordero Rivera A, Santolamazza Carbone S (2000) The effect of three species of Eucalyptus on growth and fecundity of the Eucalyptus snout beetle (Gonipterus scutellatus). Forestry 73:21–29CrossRefGoogle Scholar
  24. Cordero Rivera A, Santolamazza Carbone S, Andrés JA (1999) Life cycle and biological control of the Eucalyptus snout beetle (Coleoptera, Curculionidae) by Anaphes nitens (Hymenoptera, Mymaridae) in north-west Spain. Agric For Entomol 1:103–109CrossRefGoogle Scholar
  25. Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49CrossRefGoogle Scholar
  26. Cowles RS, Downer JA (1995) Eucalyptus snout beetle detected in California. Calif Agric 49:38–40CrossRefGoogle Scholar
  27. CPF (2013) Producción Biocontrolador Anaphes nitens Temporada 2012. Accessed 8 Jan 2018
  28. Cronin JT, Strong DR (1993) Superparasitism and mutual interference in the egg parasitoid Anagrus delicatus (Hymenoptera: Mymaridae). Ecol Entomol 18:293–302CrossRefGoogle Scholar
  29. Day RK, Kairo MT, Abraham YJ, Kfir R, Murphy ST, Mutitu KE, Chilima CZ (2003) Biological control of Homopteran pests of conifers in Africa. In: Neuenswander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. CABI Publishing, London, pp 101–112Google Scholar
  30. Debach P (1960) The importance of taxonomy to biological control as illustrated by the cryptic history of Aphytis holoxanthus n. sp. (Hymenoptera: Aphelinidae), a parasite of Chrysomphalus aonidum, and Aphytis coheni n. sp., a parasite of Aonidiella aurantii. Ann Entomol Soc Ann 53:701–705CrossRefGoogle Scholar
  31. Despres L, David J-P, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307CrossRefPubMedGoogle Scholar
  32. Echeverri-Molina D, Santolamazza-Carbone S (2010) Toxicity of synthetic and biological insecticides against adults of the Eucalyptus snout-beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae). J Pest Sci 83:297–305CrossRefGoogle Scholar
  33. EPPO (2005) Gonipterus gibberus and Gonipterus scutellatus. Bull EPPO 35:368–370CrossRefGoogle Scholar
  34. Eschler BM, Pass DM, Willis R, Foley WJ (2000) Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem Syst Ecol 28:813–824CrossRefPubMedGoogle Scholar
  35. Escribano A, Williams T, Goulson D, Cave RD, Chapman JW, Caballero P (1999) Selection of a nucleopolyhedrovirus for control of Spodoptera frugiperda (Lepidoptera: Noctuidae): structural, genetic, and biological comparison of four isolates from the Americas. J Econ Entomol 92:1079–1085CrossRefPubMedGoogle Scholar
  36. Feng Y, Wratten S, Sandhu H, Keller M (2015) Interspecific competition between two generalist parasitoids that attack the leafroller Epiphyas postvittana (Lepidoptera: Tortricidae). Bull Entomol Res 105:426–433CrossRefPubMedGoogle Scholar
  37. Frappa C (1950) Sur l’Introduction et l’aeclimatement à Madagascar d’Anaphoidea nitens Gir., insecte auxiliaire parasite du charançon de l’eucalyptus. Bull Agric Madag 2:14–19Google Scholar
  38. Freitas FC, Morales-Corrêa e Castro AC, Barbosa NCCP, Fernandes OA (2017) Characterization and comparison of genetic variation in Cotesia flavipes (Hymenoptera: Braconidae) mass reared for biological pest control using microsatellite markers. Neotrop Entomol 47:433–439CrossRefPubMedGoogle Scholar
  39. Galego C (2016) Two million Anaphes nitens against the Eucalyptus weevil. Accessed 5 Jan 2018
  40. Garnas JR, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, Roy HE, Slippers B (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18:935–952CrossRefGoogle Scholar
  41. Gentz MC, Murdoch G, King GF (2010) Tandem use of selective insecticides and natural enemies for effective, reduced-risk pest management. Biol Control 52:208–215CrossRefGoogle Scholar
  42. Gumovsky A, De Little D, Rothmann S, Lorena J, Ide Mayorga SE (2015) Re-description and first host and biology records of Entedon magnificus (Girault & Dodd) (Hymenoptera, Eulophidae), a natural enemy of Gonipterus weevils (Coleoptera, Curculionidae), a pest of Eucalyptus trees. Zootaxa 3957:577–584CrossRefPubMedGoogle Scholar
  43. Gurr GM, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Haines WP (2006) The Eucalyptus snout beetle, Gonipterus scutellatus (Coleoptera: Curculionidae) recently established in the Hawaiian Islands. Bishop Mus Occas Pap 88:25–26Google Scholar
  45. Hanks LM, Millar JG, Paine TD, Campbell CD (2000) Classical biological control of the Australian weevil Gonipterus scutellatus (Coleoptera: Curculionidae) in California. Environ Entomol 29:369–375CrossRefGoogle Scholar
  46. Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Syst 8:157–178CrossRefGoogle Scholar
  47. Hawlitschek O, Porch N, Hendrich L, Balke M (2011) Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817CrossRefPubMedGoogle Scholar
  49. Henery ML, Wallis IR, Stone C, Foley WJ (2008) Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of a specialist herbivore. Oecologia 156:847–859CrossRefPubMedGoogle Scholar
  50. Hoelmer KA, Kirk AA (2005) Selecting arthropod biological control agents against arthropod pests: can the science be improved to decrease the risk of releasing ineffective agents? Biol Control 34:255–264. CrossRefGoogle Scholar
  51. Howarth FG (1983) Classical biocontrol: panacea or Pandora’s box. Proc Hawaii Entomol Soc 2:239–244Google Scholar
  52. Huber JT, Prinsloo GL (1990) Redescription of Anaphes nitens (Girault) and description of two new species of Anaphes Haliday (Hymenoptara:Mymaridae), parasites of Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) in Tasmania. J Aust Entomol Soc 29:333–341CrossRefGoogle Scholar
  53. Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions 18:921–933CrossRefGoogle Scholar
  54. Hutchinson GE (1953) The concept of pattern in ecology. Proc Acad Natl Sci Phila 105:1–12Google Scholar
  55. Jeffries MJ, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc Lon 23:269–286CrossRefGoogle Scholar
  56. Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Miret J, Anton J, MacLeod A, Navarro MN, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Santolamazza-Carbone S, Kertesz V, Aukhojee M, Gregoire J-C (2018) Pest categorisation of the Gonipterus scutellatus species complex. EFSA J. CrossRefGoogle Scholar
  57. Kevan DK (1946) The Eucalyptus weevil in East Africa. East Afr Agric J 12:40–44Google Scholar
  58. Lanfranco D, Dungey HS (2001) Insect damage in Eucalyptus: a review of plantations in Chile. Aust Ecol 26:477–481CrossRefGoogle Scholar
  59. Liu F, Yang W, Ruan L, Sun M (2013) A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Ann Microbiol 63:1131–1135CrossRefGoogle Scholar
  60. Loch AD (2006) Phenology of Eucalyptus weevil, Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae), and chrysomelid beetles in Eucalyptus globulus plantations in south-western Australia. Agric For Entomol 8:155–165CrossRefGoogle Scholar
  61. Loch AD (2008) Parasitism of the Eucalyptus weevil, Gonipterus scutellatus Gyllenhal, by the egg parasitoid, Anaphes nitens Girault, in Eucalyptus globulus plantations in southwestern Australia. Biol Control 47:1–7CrossRefGoogle Scholar
  62. Loch AD, Floyd RB (2001) Insect pests of Tasmanian blue gum, Eucalyptus globulus globulus, in south-western Australia: history, current perspectives and future prospects. Aust Ecol 26:458–466CrossRefGoogle Scholar
  63. Lozier JD, Mills NJ (2009) Ecological niche models and coalescent analysis of gene flow support recent allopatric isolation of parasitoid wasp populations in the Mediterranean. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mackauer M (1976) Genetic problems in the production of biological control agents. Annu Rev Entomol 21:369–385CrossRefGoogle Scholar
  65. Malausa JC (2000) Biological control of insect pests of Eucalyptus in France. In: International congress of entomology abstract book 1 forest entomology, BrazilGoogle Scholar
  66. Malishev M, Sanson GD (2015) Leaf mechanics and herbivory defence: how tough tissue along the leaf body deters growing insect herbivores. Aust Ecol 40:300–308CrossRefGoogle Scholar
  67. Mally CW (1924) The Eucalyptus Snout-beetle (Gonipterus scutellatus, Gyll.). Dept Agric SA 9:415–442Google Scholar
  68. Mansilla Vazquez JP (1992) Presencia sobre Eucalyptus globulus Labill de Gonipterus scutellatus Gyll. (Col. Curculionidae) en Galicia. Bol San Veg Plagas 18:547–554Google Scholar
  69. Mapondera TS, Burgess T, Matsuki M, Oberprieler RG (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust Entomol 51:175–188CrossRefGoogle Scholar
  70. Marelli CA (1926) The weevil outbreak on Eucalyptus trees due to D. bruchi, and experiments on disinfestation of the trees affected. In: Informaciones sobre el Jardin Zoologico de La Plata. Memoria de la Ministerio de Obras Publicas de la Provincia de Buenos Aires, Buenos Aires, pp 597–646Google Scholar
  71. Marelli CA (1927) El gorgojo de los Eucaliptos hallado en la Argentina no es la especie originaria de Tasmania Gonipterus scutellatus Gyll.]. Rev Museo Plata 30:257–269Google Scholar
  72. Mayorga SEI (2013) Anaphes tasmaniae, parasitoid of Gonipterus platensis (Coleoptera: Curculionidae) introduced in Chile. ISBCA, ChileGoogle Scholar
  73. Mazza G, Inghilesi AF, Tricarico E, Montagna M, Longo S, Roversi PF (2015) First report of Gonipterus scutellatus complex (Coleoptera Curculionidae) in Sicily (Italy). Redia 98:149–150Google Scholar
  74. McCormick AC, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310CrossRefGoogle Scholar
  75. Messing RH, Klungness LM, Purcell M, Wong TTY (1993) Quality control parameters of mass-reared opiine parasitoids used in augmentative biological control of tephritid fruit flies in Hawaii. Biol Control 3:140–147CrossRefGoogle Scholar
  76. Miller D (1927) The gum-tree weevil and its parasites. NZ J Agric 35:283–289Google Scholar
  77. Mills NJ (2017) Rapid evolution of resistance to parasitism in biological control. Proc Natl Acad Sci USA 114:3792–3794CrossRefPubMedGoogle Scholar
  78. Mohamed MES (2016) The interaction between the gall wasp Leptocybe invasa and Eucalyptus camaldulensis leaves: a study of phyto-volatile metabolites. J Pharmacogn Phytother 8:90–98CrossRefGoogle Scholar
  79. Mumm R, Tiemann T, Varama M, Hilker M (2005) Choosy egg parasitoids: specificity of oviposition-induced pine volatiles exploited by an egg parasitoid of pine sawflies. Entomol Exp Appl 115:217–225CrossRefGoogle Scholar
  80. Nahrung HF, Swain AJ (2015) Strangers in a strange land: do life history traits differ for alien and native colonisers of novel environments? Biol Invasions 17:699–709CrossRefGoogle Scholar
  81. Newete SW, Oberprieler RG, Byrne MJ (2011) The host range of the Eucalyptus Weevil, Gonipterus “scutellatus” Gyllenhal (Coleoptera: Curculionidae), in South Africa. Ann For Sci 68:1005–1013CrossRefGoogle Scholar
  82. O’Neal ME, Varenhorst AJ, Kaiser MC (2018) Rapid evolution to host plant resistance by an invasive herbivore: soybean aphid (Aphis glycines) virulence in North America to aphid resistant cultivars. Curr Opin Insect Sci 26:1–7CrossRefPubMedGoogle Scholar
  83. Oberprieler RG, Caldara R (2012) Siraton devillei Hustache (Coleoptera: Curculionidae), the mysterious weevil from the Isle of Elba: exiled no longer. Zootaxa 3573:55–58CrossRefGoogle Scholar
  84. Olivier W (2009) There is honey in the forest: the history of South African forestry, 1st edn. Southern African Institute of Forestry, PretoriaGoogle Scholar
  85. Orondo SB, Day RK (1994) Cypress aphid (Cinara cupressi) damage to a cypress (Cupressus lusitanica) stand in Kenya. Int J Pest Manag 40:141–144CrossRefGoogle Scholar
  86. Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol 56:181–201CrossRefPubMedGoogle Scholar
  87. Payn KG, Dvorak WS, Myburg AA (2007) Chloroplast DNA phylogeography reveals the island colonisation route of Eucalyptus urophylla (Myrtaceae). Aust J Bot 55:673–683CrossRefGoogle Scholar
  88. Pérez Otero R, Mansilla Vázquez P, Rodríguez Iglesias J (2003) Eficacia y efectos en laboratorio de diferentes insecticidas en el control del defoliador del eucalipto Gonipterus scutellatus y de su parasitoide Anaphes nitens. Bol San Veg Plagas 29:649–658Google Scholar
  89. Perović DJ, Gámez-Virués S, Landis DA, Wäckers F, Gurr GM, Wratten SD, You MS, Desneux N (2018) Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol Rev 93:306–321CrossRefPubMedGoogle Scholar
  90. Pinet C (1986) Patasson nitens, parasite spécifique de Gonipterus scutellatus en France. EPPO 16:285–287CrossRefGoogle Scholar
  91. Rabasse J, Perrin H (1979) Introduction in France of the Eucalyptus snout beetle Gonipterus scutellatus Gyll. Ann Zool Ecol Anim 11:337–345Google Scholar
  92. Reis AR, Ferreira L, Tomé M, Araujo C, Branco M (2012) Efficiency of biological control of Gonipterus platensis (Coleoptera: Curculionidae) by Anaphes nitens (Hymenoptera: Mymaridae) in cold areas of the Iberian Peninsula: Implications for defoliation and wood production in Eucalyptus globulus. For Ecol Manag 270:216–222CrossRefGoogle Scholar
  93. Richardson KF, Meakins RH (1986) Inter- and Intra-specific variation in the susceptibility of Eucalypts to the snout beetle Gonipterus scutellatus Gyll. (Coleoptera: Curculionidae). South For 139:21–31Google Scholar
  94. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Syst Biol 56:924–942CrossRefPubMedGoogle Scholar
  95. Rodas C (2018) Important insect pest and diseases affecting plantation forestry in Colombia. In: Embrapa Florestas-Resumo em anais de congresso (ALICE), 21–23 March 2018. In: IUFRO working party meeting, 2018, Punta del Este. Improving forest health on commercial plantations: book of abstractsGoogle Scholar
  96. Rosado-Neto G (1993) Gonipterinae of Eucalyptus: first record of Gonipterus scutellatus for the state of São Paulo, Brazil, and some considerations on G. gibberus (Coleoptera: Curculionidae). Rev Bras Entomol 37:465–467Google Scholar
  97. Rosado-Neto G, Marques MI (1996) Características do adulto, genitália e formas imaturas de Gonipterus gibberus Boisduvale G. scutellatus Gyllenhal (Coleoptera, Curculionidae). Rev Bras Zool 13:77–90CrossRefGoogle Scholar
  98. Rosen D (1986) The role of taxonomy in effective biological control programs. Agric Ecosyst Environ 15:121–129CrossRefGoogle Scholar
  99. SAG (2005) Informativo fitosanitario forestal no. 1. Accessed 5 Jan 2018
  100. SAG (2014) Informativo fitosanitario forestal no. 9. Accessed 5 Jan 2018
  101. Santolamazza-Carbone S, Cordero Rivera A (2003) Egg load and adaptive superparasitism in Anaphes nitens, an egg parasitoid of the Eucalyptus snout-beetle Gonipterus scutellatus. Entomol Exp Appl 106:127–134CrossRefGoogle Scholar
  102. Santolamazza-Carbone S, de Ana-Magan FJF (2004) Testing of selected insecticides to assess the viability of the integrated pest management of the Eucalyptus snout-beetle Gonipterus scutellatus in north-west Spain. J Appl Entomol 128:620–627CrossRefGoogle Scholar
  103. Santolamazza-Carbone S, Rodriguez-Illamola A, Cordero Rivera A (2006) Thermal requirements and phenology of the Eucalyptus snout beetle Gonipterus scutellatus Gyllenhal. J Appl Entomol 130:368–376CrossRefGoogle Scholar
  104. Santolamazza-Carbone S, Pestaña Nieto M, Pérez Otero R, Mansilla Vázquez P, Cordero Rivera A (2008) Winter and spring ecology of Anaphes nitens, a solitary egg-parasitoid of the Eucalyptus snout-beetle Gonipterus scutellatus. BioControl 54:195–209CrossRefGoogle Scholar
  105. Schaffner U (2001) Host range testing of insects for biological weed control: how can it be better interpreted? Bioscience 51:951–959CrossRefGoogle Scholar
  106. Simon J-C, Peccoud J (2018) Rapid evolution of aphid pests in agricultural environments. Curr Opin Insect Sci 26:17–24CrossRefPubMedGoogle Scholar
  107. Singer MC (2000) Reducing ambiguity in describing plant-insect interactions: “preference”, “acceptability” and “electivity”. Ecol Lett 3:159–162CrossRefGoogle Scholar
  108. Stenberg JA, Heil M, Åhman I, Björkman C (2015) Optimizing crops for biocontrol of pests and disease. Trends Plant Sci 20:698–712. CrossRefPubMedGoogle Scholar
  109. Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37CrossRefGoogle Scholar
  110. Sun D, Guo Z, Liu Y, Zhang Y (2017) Progress and prospects of CRISPR/Cas systems in insects and other arthropods. Front Physiol 8:1–22. CrossRefGoogle Scholar
  111. Thomas MB (1999) Ecological approaches and the development of “truly integrated” pest management. Proc Natl Acad Sci USA 96:5944–5951CrossRefPubMedGoogle Scholar
  112. Thomas MB, Blanford S (2003) Thermal biology in insect–parasite interactions. Trends Ecol Evol 18:344–350CrossRefGoogle Scholar
  113. Thomas M, Waage J (1996) Integration of biological control and host plant resistance breeding: a scientific and literature review. CTA, WageningenGoogle Scholar
  114. Tillman PG, Mulrooney JE (2000) Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. J Econ Entomol 93:1638–1643CrossRefPubMedGoogle Scholar
  115. Tomasetto F, Tylianakis JM, Reale M, Wratten S, Goldson SL (2017) Intensified agriculture favors evolved resistance to biological control. Proc Natl Acad Sci USA 114:3885–3890CrossRefPubMedGoogle Scholar
  116. Tooke FGC (1955) The Eucalyptus Snout Beetle: a study of its ecology and control by biological means. Dept Agric SA:1–282Google Scholar
  117. Tribe GD (2005) The present status of Anaphes nitens (Hymenoptera: Mymaridae), an egg parasitoid of the Eucalyptus snout beetle Gonipterus scutellatus, in the Western Cape Province of South Africa. South For 203:49–54Google Scholar
  118. Turnbull AL, Chant DA (1961) The practice and theory of biological control of insects in Canada. Can J Zool 39:697–753CrossRefGoogle Scholar
  119. Valente C, Vaz A, Pina J, Manta A (2004), Sequeira a control strategy against the eucalyptus snout beetle, Gonipterus scutellatus Gyllenhal (Coleoptera, Curculionidae), by the portuguese cellulose industry. In: NMG B (ed) Eucalyptus in a changing world. Procedings of IUFRO conference, Aveiro, pp 622–627Google Scholar
  120. Valente C, Gonçalves C, Afonso C, Reis A, Branco M (2017a) Controlo biológico clássico do gorgulho-do-eucalipto: situação atual e perspetivas futuras. Accessed 1 Sept 2018
  121. Valente C, Gonçalves CI, Reis A, Branco M (2017b) Pre-selection and biological potential of the egg parasitoid Anaphes inexpectatus for the control of the Eucalyptus snout beetle, Gonipterus platensis. J Pest Sci 90:911–923CrossRefGoogle Scholar
  122. van Alphen JJM, Visser ME (1990) Superparasitism as an adaptive strategy for insect parasitoids. Annu Rev Entomol 35:59–79CrossRefPubMedGoogle Scholar
  123. van Lenteren J (2000) Success in biological control of arthropods by augmentation of natural enemies. In: Gurr G, Wratten S (eds) Biological control: measures of success. Springer, Amsterdam, pp 77–103CrossRefGoogle Scholar
  124. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20CrossRefGoogle Scholar
  125. Verleur M (2012) Monitoring of block plantings in coastal Zululand to establlsh if Gonipterus scutellatus has clonal preferences. Sappi technical report 16/2011Google Scholar
  126. Wharton TN, Kriticos DJ (2004) The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia. Divers Distrib 10:253–262CrossRefGoogle Scholar
  127. Wilcken CF, de Oliveira NC, Sartório RC, Loureiro EB, Bezerra Junior N, Rosado-Neto GH (2008) Ocorrência de Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) em plantações de eucalipto no Estado do Espírirto Santo. Arq Inst Biol 75:113–115Google Scholar
  128. Williams MEDC (2001) Biological control of thrips on ornamental crops: interactions between the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on cyclamen. Biocontrol Sci Technol 11:41–55CrossRefGoogle Scholar
  129. Williams JR, Moutia LA, Hermelin PR (1951) The Biological Control of Gonipterus scutellatus Gyll. (Col. Curculionidae) in Mauritius. Bull Entomol Res 42:23–28CrossRefGoogle Scholar
  130. Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836CrossRefGoogle Scholar
  131. Withers TM (2001) Colonization of eucalypts in New Zealand by Australian insects. Aust Ecol 26:467–476CrossRefGoogle Scholar
  132. Zepeda-Paulo F, Dion E, Lavandero B, Maheo F, Outreman Y, Simon JC, Figueroa CC (2016) Signatures of genetic bottleneck and differentiation after the introduction of an exotic parasitoid for classical biological control. Biol Invasions 18:565–581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaHatfield, PretoriaSouth Africa
  2. 2.Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations