Advertisement

Chestnut tree damage evolution due to Dryocosmus kuriphilus attacks

  • 123 Accesses

Abstract

Dryocosmus kuriphilus has become a major threat to Castanea sativa and chestnut cultivation in Europe since its discovery in Italy in 2002. Thankfully, the biological control agent Torymus sinensis has proven to effectively control and reduce the D. kuriphilus population. The reaction of chestnut trees to decreasing D. kuriphilus pressure, however, has been sparsely investigated. In this study, we analyze the recovery patterns of chestnut trees since the pest epidemic peak in 15 sites in southern Switzerland that were differently affected by the dephased arrival of D. kuriphilus and T. sinensis. By using various tree damage and insect population indicators, we show how damage varies as a function of the time elapsed between pest arrival and biological control by T. sinensis. Specifically, trees in sites experiencing seven years of D. kuriphilus uncontrolled attacks show large dying crown portions and stress-induced reactions (e.g., suckers along the stem) compared to sites where the two insects arrived nearly simultaneously. Moreover, in warm and south-exposed sites, the D. kuriphilus population remains significant and damage on chestnut trees still persists suggesting a desynchronisation in the phenology of the antagonist with respect to the pest.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aebi A, Schönrogge K, Melika G et al (2006) Parasitoid recruitment to the globally invasive chestnut gall wasp Dryocosmus kuriphilus. In: Ozaki K, Yukawa J, Ohgushi T, Price PW (eds) Galling arthropods and their associates. Springer, Tokyo, pp 103–121

  2. Aebi A, Schönrogge K, Melika G et al (2007) Native and introduced parasitoids attacking the invasive chestnut gall wasp Dryocosmus kuriphilus. EPPO Bull 37:166–171. https://doi.org/10.1111/j.1365-2338.2007.01099.x

  3. Aebi A, Schoenenberger N, Bigler F (2011) Evaluating the use of Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus in the Canton Ticino, Switzerland. Agrosc Reckenholz-Tänikon Rep 72:1–72

  4. Avtzis DN, Melika G, Matošević D, Coyle DR (2019) The Asian chestnut gall wasp Dryocosmus kuriphilus: a global invader and a successful case of classical biological control. J Pest Sci 92:107–115. https://doi.org/10.1007/s10340-018-1046-1

  5. Battisti A, Benvegnu I, Colombari F, Haack RA (2014) Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production. Agric For Entomol 16:75–79. https://doi.org/10.1111/afe.12036

  6. Beers TW, Dress PE, Wensel LC (1966) Notes and observations: aspect transformation in site productivity research. J For 64:691–692

  7. Bernardinelli I, Bessega D, Zanolli P et al (2016) Survey of indigenous parasitoids affecting the invasive chestnut gall wasp Dryocosmus kuriphilus in the Friuli Venezia Giulia region (North-East Italy). EPPO Bull 46:286–289. https://doi.org/10.1111/epp.12296

  8. Bernardo U, Iodice L, Sasso R et al (2013) Biology and monitoring of Dryocosmus kuriphilus on Castanea sativa in Southern Italy. Agric For Entomol 15:65–76. https://doi.org/10.1111/j.1461-9563.2012.00588.x

  9. Bigler F, Babendreier D, Kuhlmann U (2006) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Pub, Wallingford

  10. Blaser P, Kernebeek P, Tebbens L et al (2008) Cryptopodzolic soils in Switzerland. Eur J Soil Sci 48:411–423. https://doi.org/10.1111/j.1365-2389.1997.tb00207.x

  11. Bonsignore CP, Vono G, Bernardo U (2019) Environmental thermal levels affect the phenological relationships between the chestnut gall wasp and its parasitoids. Physiol Entomol. https://doi.org/10.1111/phen.12280

  12. Borowiec N, Thaon M, Brancaccio L et al (2014) Classical biological control against the chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera, Cynipidae) in France. Plant Prot Q 29:9–12

  13. Borowiec N, Thaon M, Brancaccio L et al (2018) Early population dynamics in classical biological control: establishment of the exotic parasitoid Torymus sinensis and control of its target pest, the chestnut gall wasp Dryocosmus kuriphilus, in France. Entomol Exp Appl 166:367–379. https://doi.org/10.1111/eea.12660

  14. Bounous G (2006) Revival of chestnut culture in Mediterranean countries: factors to improve the quality of productions. Adv Hortic Sci 20:7–15

  15. Brändli U-B (1998) Die häufigsten Waldbäume der Schweiz. Ergebnisse aus dem Landesforstinventar 1983–1985: Verbreitung, Standort und Häufigkeit von 30 Baumarten. Ber Eidgenöss Forsch.anst Wald Schnee Landsch 342:1–279

  16. Brussino G, Bosio G, Baudino M et al (2002) Pericoloso insetto esotico per il castagno europeo. Inf Agrar 58:59–61

  17. Ceschi I (2014) Il bosco del Canton Ticino, 2a ed. agg. Dipartimento del territorio, Divisione dell’ambiente, Sezione forestale, Locarno

  18. Colombari F, Battisti A (2016a) Native and introduced parasitoids in the biocontrol of Dryocosmus kuriphilus in Veneto (Italy). EPPO Bull 46:275–285. https://doi.org/10.1111/epp.12297

  19. Colombari F, Battisti A (2016b) Spread of the introduced biocontrol agent Torymus sinensis in north-eastern Italy: dispersal through active flight or assisted by wind? Biocontrol 61:127–139. https://doi.org/10.1007/s10526-015-9712-1

  20. Conedera M, Gehring E, Quacchia A (2015) Danni da cinipide: il peggio è passato? L’ape Riv Svizz di Apic 98:18–19

  21. Cooper WR, Rieske LK (2007) Community Associates of an Exotic Gallmaker, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), in Eastern North America. Ann Entomol Soc Am 100:9. https://doi.org/10.1603/0013-8746(2007)100%5b236:caoaeg%5d2.0.co;2

  22. Doğanlar M, Savaş SK (2018) Studies on release methods of Torymus sinensis (Hymenoptera: Torymidae), parasitoid of Dryocosmus kuriphilus Yasumatsu), into Turkey from Italy. Acta Hortic 1220:109–112. https://doi.org/10.17660/actahortic.2018.1220.16

  23. Ferracini C, Ferrari E, Pontini M et al (2017) Post-release evaluation of non-target effects of Torymus sinensis, the biological control agent of Dryocosmus kuriphilus in Italy. BioControl. https://doi.org/10.1007/s10526-017-9803-2

  24. Ferracini C, Bertolino S, Bernardo U et al (2018a) Do Torymus sinensis (Hymenoptera: Torymidae) and agroforestry system affect native parasitoids associated with the Asian chestnut gall wasp? Biol Control 121:36–43. https://doi.org/10.1016/j.biocontrol.2018.01.009

  25. Ferracini C, Ferrari E, Pontini M et al (2018b) Effectiveness of Torymus sinensis: a successful long-term control of the Asian chestnut gall wasp in Italy. J Pest Sci 2004:1–7. https://doi.org/10.1007/s10340-018-0989-6

  26. Forster B, Castellazzi T, Colombi L et al (2009) Die Edelkastaniengallwespe Dryocosmus kuriphilus (Yasumatsu) (Hymenoptera, Cynipidae) tritt erstmals in der Südschweiz auf. Mitt Schweiz Entomol Ges 82:271–279

  27. Francati S, Alma A, Ferracini C et al (2015) Indigenous parasitoids associated with Dryocosmus kuriphilus in a chestnut production area of Emilia Romagna (Italy). Bull Insectol 68:127–134

  28. Gehring E, Bellosi B, Quacchia A, Conedera M (2018a) Assessing the impact of Dryocosmus kuriphilus on the chestnut tree: branch architecture matters. J Pest Sci 91:189–202. https://doi.org/10.1007/s10340-017-0857-9

  29. Gehring E, Bellosi B, Quacchia A, Conedera M (2018b) Evaluating Dryocosmus Kuriphilus-induced Damage on Castanea Sativa. J Vis Exp. https://doi.org/10.3791/57564

  30. Gómez JF, Nieves-Aldrey JL, Hernández Nieves M (2008) Comparative morphology, biology and phylogeny of terminal-instar larvae of the European species of Toryminae (Hym., Chalcidoidea, Torymidae) parasitoids of gall wasps (Hym. Cynipidae). Zool J Linn Soc 154:676–721

  31. Graziosi I, Rieske LK (2014) Local spread of an exotic invader: using remote sensing and spatial analysis to document proliferation of the invasive Asian chestnut gall wasp. Acta Hortic 1019:113–118. https://doi.org/10.17660/ActaHortic.2014.1019.17

  32. Gyoutoku Y, Uemura M (1985) Ecology and biological control of the chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae). 1. Damage and parasitization in Kumamoto Prefecture. In: Proceedings of the association for plant protection of Kyushu (Japan)

  33. Herms DA (2004) Using degree-days and plant phenology to predict pest activity. In: Krischick V, Davidson J (eds) IPM (integrated pest management) of Midwest landscapes: tactics and tools for IPM. University of Minnesota, Minnesota Agriculture Experiment Station, St. Paul, pp 49–59

  34. Kato K, Hijii N (1997) Effects of gall formation by Dryocosmus kuriphilus Yasumatsu (Hym., Cynipidae) on the growth of chestnut trees. J Appl Entomol 121:9–15. https://doi.org/10.1111/j.1439-0418.1997.tb01363.x

  35. Kos K, Kriston E, Melika G (2015) Invasive chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae), its native parasitoid community and association with oak gall wasps in Slovenia. Eur J Entomol 112:698–704. https://doi.org/10.14411/eje.2015.091

  36. Kotobuki K, Mori K, Sato Y (1985) Two methods to estimate the tree damage by chestnut gall wasp Dryocosmus-kuriphilus. Bull Fruit Tree Res Stn A 2:29–36

  37. Krebs P, Koutsias N, Conedera M (2012) Modelling the eco-cultural niche of giant chestnut trees: new insights into land use history in southern Switzerland through distribution analysis of a living heritage. J Hist Geogr 38:372–386. https://doi.org/10.1016/j.jhg.2012.01.018

  38. Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28:1–26

  39. Ländliches Fortbildungs Institut LFI (2017) Edelkastanien als Solitärbaum Kastanien-Kulturen. https://www.lfi.at/media.php?filename=download%3D%2F2017.02.17%2F%2F1487318780057281.pdf&rn=Schantl. Accessed 12 Aug 2019

  40. Lione G, Giordano L, Ferracini C et al (2016) Testing ecological interactions between Gnomoniopsis castaneae and Dryocosmus kuriphilus. Acta Oecol 77:10–17. https://doi.org/10.1016/j.actao.2016.08.008

  41. Lione G, Danti R, Fernandez-Conradi P et al (2019) The emerging pathogen of chestnut Gnomoniopsis castaneae: the challenge posed by a versatile fungus. Eur J Plant Pathol 153:671–685. https://doi.org/10.1007/s10658-018-1597-2

  42. Maltoni A, Mariotti B, Jacobs DF, Tani A (2012a) Pruning methods to restore Castanea sativa stands attacked by Dryocosmus kuriphilus. New For 43:869–885. https://doi.org/10.1007/s11056-012-9323-y

  43. Maltoni A, Mariotti B, Tani A (2012b) Case study of a new method for the classification and analysis of Dryocosmus kuriphilus Yasumatsu damage to young chestnut sprouts. IForest 5:50–59. https://doi.org/10.3832/ifor0598-008

  44. Matošević D, Melika G (2013) Recruitment of native parasitoids to a new invasive host: first results of Dryocosmus kuriphilus parasitoid assemblage in Croatia. Bull Insectol 66:231–238

  45. Matošević D, Lacković N, Melika G et al (2015) Biological control of invasive Dryocosmus kuriphilus with introduced parasitoid Torymus sinensis in Croatia, Slovenia and Hungary. Period Biol 117:471–477. https://doi.org/10.18054/pb.2015.117.4.3445

  46. Matošević D, Lacković N, Kos K et al (2017) Success of classical biocontrol agent Torymus sinensis within its expanding range in Europe. J Appl Entomol 141:758–767. https://doi.org/10.1111/jen.12388

  47. Meyer JB, Gallien L, Prospero S (2015) Interaction between two invasive organisms on the European chestnut: does the chestnut blight fungus benefit from the presence of the gall wasp? FEMS Microbiol Ecol 91:1–10. https://doi.org/10.1093/femsec/fiv122

  48. Moriya S, Shiga M, Adachi I (2003) Classical biological control of the chestnut gall wasp in Japan. In: 1st International symposium on biological control of arthropods. USDA-Forestry Service. Honolulu Hawaii, pp 407–415

  49. Müller E, Stierlin HR (1990) Sanasilva Kronenbilder: mit Nadel- und Blattverlustprozenten. Eidgenössische Forschungsanstalt für Wald. Schnee und Landschaft, Birmensdorf

  50. Murakami Y (2009) A history of studies on the chestnut gall wasp in Japan. A global serious pest of chestnut trees: yesterday, today and tomorrow. Japan-Italy Joint International Symposium, Tsukuba, Japan, November pp 24–25

  51. Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif. https://doi.org/10.1007/s00357-014-9161-z

  52. Oho N, Shimura I (1970) Research process on the chestnut gall wasp and some recent problems about its damage. Shokubutsu Boeki (Plant Prot) 24:421–427

  53. Palmeri V, Cascone P, Campolo O et al (2014) Hymenoptera wasps associated with the Asian gall wasp of chestnut (Dryocosmus kuriphilus) in Calabria, Italy. Phytoparasitica 42:699–702. https://doi.org/10.1007/s12600-014-0411-8

  54. Panzavolta T, Bracalini M, Croci F et al (2012) Asian chestnut gall wasp in Tuscany: gall characteristics, egg distribution and chestnut cultivar susceptibility. Agric For Entomol 14:139–145. https://doi.org/10.1111/j.1461-9563.2011.00551.x

  55. Panzavolta T, Croci F, Bracalini M et al (2018) Population dynamics of native parasitoids associated with the Asian chestnut gall wasp (Dryocosmus kuriphilus) in Italy. Psyche. https://doi.org/10.1155/2018/8078049

  56. Paparella F, Ferracini C, Portaluri A et al (2016) Biological control of the chestnut gall wasp with Torymus sinensis: a mathematical model. Ecol Modell 338:17–36. https://doi.org/10.1016/j.ecolmodel.2016.07.023

  57. Pérez-Otero R, Crespo D, Mansilla JP (2017) Dryocosmus kuriphilus Yasumatsu, 1951 (Hymenoptera: Cynipidae) in Galicia (NW Spain): pest dispersion, associated parasitoids and first biological control attempts. Arq Entomolóxicos 17:439–448

  58. Picciau L, Alma A, Ferracini C (2019) Effect of different feeding sources on lifespan and fecundity in the biocontrol agent Torymus sinensis. Biol Control 134:45–52. https://doi.org/10.1016/J.BIOCONTROL.2019.04.002

  59. QGIS Development Team (2018) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Accessed 12 Aug 2019

  60. Quacchia A, Moriya S, Bosio G et al (2008) Rearing, release and settlement prospect in Italy of Torymus sinensis, the biological control agent of the chestnut gall wasp Dryocosmus kuriphilus. Biocontrol 53:829–839. https://doi.org/10.1007/s10526-007-9139-4

  61. Quacchia A, Ferracini C, Nicholls JA et al (2013) Chalcid parasitoid community associated with the invading pest Dryocosmus kuriphilus in north-western Italy. Insect Conserv Divers 6:114–123. https://doi.org/10.1111/j.1752-4598.2012.00192.x

  62. Quacchia A, Moriya S, Bosio G (2014) Effectiveness of Torymus sinensis in the biological control of Dryocosmus kuriphilus in Italy. Acta Hortic 1043:199–204

  63. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 12 Aug 2019  

  64. Rieske LK (2007) Success of an exotic gallmaker, Dryocosmus kuriphilus, on chestnut in the USA: a historical account. EPPO Bull 37:172–174. https://doi.org/10.1111/j.1365-2338.2007.01100.x

  65. Rigling D, Prospero S (2018) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol 19:7–20. https://doi.org/10.1111/mpp.12542

  66. Sartor C, Dini F, Torello Marinoni D et al (2015) Impact of the Asian wasp Dryocosmus kuriphilus (Yasumatsu) on cultivated chestnut: yield loss and cultivar susceptibility. Sci Hortic (Amsterdam) 197:454–460. https://doi.org/10.1016/j.scienta.2015.10.004

  67. Stone GN, Schönrogge K, Rachel J et al (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

  68. Tarcali G, Radocz L (2009) Experiences of a study trip in China on the research of chestnut blight and gall wasp. Analele Univ din Oradea, Fasc Prot Mediu XIV:410–419

  69. Toyama M, Higaki M, Mishiro K, et al (2009) Population fluctuations of the chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu, and its natural enemies in the vicinity of Tsukuba over the past fifteen years. In: Moriya S (ed) A global serious pest of chestnut trees, Dryocosmus kuriphilus : yesterday, today and tomorrow, Proceedings of the Japan-Italy joint international symposium. Tsukuba, Japan, pp 18–20

  70. Ugolini F, Massetti L, Pedrazzoli F et al (2014) Ecophysiological responses and vulnerability to other pathologies in European chestnut coppices, heavily infested by the Asian chestnut gall wasp. For Ecol Manage 314:38–49. https://doi.org/10.1016/j.foreco.2013.11.031

  71. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

  72. Yara K, Sasawaki T, Kunimi Y (2010) Hybridization between introduced Torymus sinensis (Hymenoptera: Torymidae) and indigenous T. beneficus (late-spring strain), parasitoids of the Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae). Biol Control 54:14–18. https://doi.org/10.1016/j.biocontrol.2010.03.006

  73. Zhi-Yong Z (2009) Study approaches on the chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu in China. Acta Hortic 844:425–432. https://doi.org/10.17660/ActaHortic.2009.844.59

Download references

Author information

Correspondence to Eric Gehring.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by A. Battisti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gehring, E., Bellosi, B., Reynaud, N. et al. Chestnut tree damage evolution due to Dryocosmus kuriphilus attacks. J Pest Sci 93, 103–115 (2020) doi:10.1007/s10340-019-01146-0

Download citation

Keywords

  • Castanea sativa
  • Torymus sinensis
  • Tree damage
  • Recovery process
  • Damage recrudescence
  • Classical biological control