Intraguild predation is independent of landscape context and does not affect the temporal dynamics of aphids in cereal fields


Abundance and diversity of natural enemies increases with higher landscape complexity. However, more species can also increase negative interactions such as intraguild predation (IGP), which could be detrimental to pest control. Direct observations of these trophic interactions are still lacking. In the present study, we employed DNA-based gut content analyses of coccinellid beetles to assess IGP (direct and coincidental) and aphid consumption. Species-specific and group-specific primer pairs were used to unveil the interactions of the most abundant coccinellid species, three cereal aphids and their associated parasitoids. In order to determine whether the landscape complexity promotes these interactions, we used replicated wheat fields in two contrasting landscape contexts over the season in central Chile. With higher abundance of coccinellids, we observed greater aphid consumption in complex contexts. The consumption of parasitized aphids was mostly detected early in complex contexts, suggesting a detrimental effect on the parasitoid population. Following molecular analysis, we can state that the aphids are important feeding resources for the coccinellid assemblage and are actively foraging on this important pest. Finally, this study demonstrates that direct IGP is a common interaction in this system, independently of the landscape context during the complete season. Nevertheless, the native Eriopis chilensis was found to be the most frequently consumed intraguild prey. In contrast with expected predictions, we found little evidence that the landscape context increased negative interactions, such as IGP and IGP-C and in turn that these decrease the control of Sitobion avenae.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. Aguayo M, Pauchard A, Azócar G, Parra O (2009) Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: entendiendo la dinámica espacial y temporal del paisaje. Rev Chil Hist Nat 82:361–374.

  2. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw.

  3. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727.

  4. Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Entomol Exp Appl 97:93–108.

  5. Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6:857–865.

  6. Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992.

  7. Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67.

  8. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932.

  9. Cock MJWW, Murphy ST, Kairo MTK et al (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. Biocontrol 61:349–363.

  10. Colwell RK, Fuentes ER (1975) Experimental studies of the niche. Annu Rev Ecol Syst 6:281–310.

  11. Derocles SAP, Le Ralec A, Besson MM, Maret M, Walton A, Evans DM, Plantegenest M (2014) Molecular analysis reveals high compartmentalization in aphid-primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats. Mol Ecol 23(15):3900–3911.

  12. Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11.

  13. Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410.

  14. Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306.

  15. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299.

  16. Gagnon A-È, Heimpel GE, Brodeur J (2011) The ubiquity of intraguild predation among predatory arthropods. PLoS ONE 6:e28061.

  17. Gardiner MM, Landis DA (2007) Impact of intraguild predation by adult Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Hemiptera: Aphididae) biological control in cage studies. Biol Control 40:386–395.

  18. Gardiner MM, O’Neal ME, Landis DA (2011) Intraguild predation and native lady beetle decline. PLoS ONE 6:e23576.

  19. Gontijo LM, Beers EH, Snyder WE (2015) Complementary suppression of aphids by predators and parasitoids. Biol Control 90:83–91.

  20. Gonzalez G (2006) Los Coccinellidae de Chile. Accessed 15 Jun 2016

  21. Gonzalez G (2008) Lista y distribución geográfica de especies de coccinellidae (Insecta: Coleoptera) presentes en Chile. Boletín del Mus Nac Hist Nat Chile 57:77–107

  22. Greenstone MH, Rowley DL, Weber DC et al (2007) Feeding mode and prey detectability half-lives in molecular gut-content analysis: an example with two predators of the Colorado potato beetle. Bull Entomol Res 97:201.

  23. Greenstone MH, Payton ME, Weber DC, Simmons AM (2014) The detectability half-life in arthropod predator-prey research: what it is, why we need it, how to measure it, and how to use it. Mol Ecol 23:3799–3813.

  24. Grez AA, Zaviezo T, Tischendorf L, Fahrig L (2004) A transient, positive effect of habitat fragmentation on insect population densities. Oecologia 141:444–451.

  25. Grez AA, Torres C, Zaviezo T et al (2010) Migration of coccinellids to alfalfa fields with varying adjacent vegetation in central Chile. Cienc Investig Agrar 37:111–121.

  26. Grez AA, Viera B, Soares AO (2012) Biotic interactions between Eriopis connexa and Hippodamia variegata, a native and an exotic coccinellid species associated with alfalfa fields in Chile. Entomol Exp Appl 142:36–44.

  27. Grez AA, Zaviezo T, Roy HE et al (2016) Rapid spread of Harmonia axyridis in Chile and its effects on local coccinellid biodiversity. Divers Distrib.

  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

  29. Hall SR, Duffy MA, Cáceres CE (2005) Selective predation and productivity jointly drive complex behavior in host-parasite systems. Am Nat 165:70–81.

  30. Hautier L, San Martin G, Callier P et al (2011) Alkaloids provide evidence of intraguild predation on native coccinellids by Harmonia axyridis in the field. Biol Invasions 13:1805–1814.

  31. Hodek I, Honek A, van Emden HF (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae), 1st edn. Wiley, Chichester

  32. Jonsson M, Wratten SD, Landis DA et al (2010) Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol Invasions 12:2933–2945.

  33. Karp DS, Chaplin-Kramer R, Meehan TD et al (2018) Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci.

  34. Katsanis A, Babendreier D, Nentwig W, Kenis M (2013) Intraguild predation between the invasive ladybird Harmonia axyridis and non-target European coccinellid species. Biocontrol 58:73–83.

  35. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201.

  36. Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592.

  37. Miranda A, Altamirano A, Cayuela L et al (2015) Different times, same story: native forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Appl Geogr 60:20–28.

  38. Nieto Nafría JM, Fuentes-Contreras E, Castro Colmenero M et al (2016) Catálogo de los áfidos (Hemiptera, Aphididae) de Chile, con plantas hospedadoras y distribuciones regional y provincial. Graellsia 72:50.

  39. Ortiz-Martínez SA, Lavandero B (2018) The effect of landscape context on the biological control of Sitobion avenae: temporal partitioning response of natural enemy guilds. J Pest Sci 91:41–53.

  40. Ovalle C, Aronson J, del Pozo A, Avendano J (1990) The espinal: agroforestry systems of the mediterranean-type climate region of Chile: state of the art and prospects for improvement. Agrofor Syst 10:213–239.

  41. Paula DP, Linard B, Crampton-Platt A et al (2016) Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents. PLoS ONE 11:e0161841.

  42. Pell JK, Baverstock J, Roy HE et al (2008) Intraguild predation involving Harmonia axyridis: a review of current knowledge and future perspectives. Biocontrol 53:147–168.

  43. Peñalver-Cruz A, Ortiz-Martínez SA, Villegas C et al (2017) Abundance and prevalence of Aphidius avenae (Hymenoptera: Braconidae: Aphidiinae) in Chile. Cienc Investig Agrar 44:207–214.

  44. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330.

  45. QGIS Development Team (2009) QGIS geographic information system

  46. Quicke DLJ (2015) The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology, 1st edn. Wiley, Chichester

  47. R Core Team (2015) R: a language and environment for statistical computing

  48. Raymond L, Ortiz-Martínez SA, Lavandero B (2015) Temporal variability of aphid biological control in contrasting landscape contexts. Biol Control 90:148–156.

  49. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22.

  50. Rondoni G, Athey KJ, Harwood JD et al (2015) Development and application of molecular gut-content analysis to detect aphid and coccinellid predation by Harmonia axyridis (Coleoptera: Coccinellidae) in Italy. Insect Sci 22:719–730.

  51. Roubinet E, Jonsson T, Malsher G, Staudacher K, Traugott M, Ekbom B, Jonsson M (2018) High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci Rep 8(1):8054.

  52. Santibañez F, Uribe JM (1993) Atlas agroclimático de Chile regiones VI, VII, VIII y IX. MINAGRI, FIA, CORFO, Santiago

  53. Sint D, Traugott M (2015) Food web designer: a flexible tool to visualize interaction networks. J Pest Sci 89:1–5.

  54. Sint D, Raso L, Traugott M (2012) Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol 3:898–905.

  55. Starý P, Rodriguez AF, Gerding M et al (1994) Distribution, frequency, host range and parasitism of two new cereal aphids, Sitobion fragariae (Walker) and Metopolophium festucae cerealium (Stroyan) (Homoptera, Aphididae), in Chile. Agric Técnica 54:54–59

  56. Staudacher K, Jonsson M, Traugott M (2016) Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. J Pest Sci 89:281–293.

  57. Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237.

  58. Sunnucks P, Hales D (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524

  59. Thomas AP, Trotman J, Wheatley A et al (2013) Predation of native coccinellids by the invasive alien Harmonia axyridis (Coleoptera: Coccinellidae): detection in Britain by PCR-based gut analysis. Insect Conserv Divers 6:20–27.

  60. Traugott M, Symondson WOC (2008) Molecular analysis of predation on parasitized hosts. Bull Entomol Res 98:223–231.

  61. Traugott M, Bell JR, Raso L et al (2012) Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. Bull Entomol Res 102:239–247.

  62. Traugott M, Kamenova S, Ruess L et al (2013) Empirically characterising trophic networks. In: Woodward G, Bohan DA (eds) Advances in ecological research, 1st edn. Elsevier, Amsterdam, pp 177–224

  63. Tscharntke T, Klein AM, Kruess A et al (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874.

  64. Tscharntke T, Bommarco R, Clough Y et al (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309.

  65. Tscharntke T, Karp DS, Chaplin-kramer R et al (2016) When natural habitat fails to enhance biological pest control—five hypotheses. Biol Conserv 204:449–458.

  66. Tylianakis JM, Romo CM (2010) Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol 11:657–668.

  67. Tylianakis JM, Didham RK, Wratten SD (2004) Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–666.

  68. Van Veen FJF, Müller CB, Pell JK, Godfray HCJ (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. J Anim Ecol 77(1):191–200.

  69. Woltz JM, Isaacs R, Landis DA (2012) Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agric Ecosyst Environ 152:40–49.

  70. Yang F, Wang Q, Wang D et al (2017) Intraguild predation among three common coccinellids (Coleoptera: Coccinellidae) in China: detection using DNA-based gut-content analysis. Environ Entomol 46:1–10.

  71. Ye Z, Vollhardt IMG, Girtler S et al (2017) An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks. Sci Rep 7:3138.

  72. Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC, Lavandero B (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6:983–999.

Download references


The authors would like to thank Cinthya Villegas, Nuri Cabrera, Marcos Dominguez, Rebecca Mayer, Zhengpei Ye and Lucie Raymond for their help in field collecting samples and laboratory procedures.


This study was funded by Fondecyt Grant 1140632, CONICYT and Universidad de Talca doctoral grant, the KWA scholarship and University of Innsbruck financial support and the FP7 IRSES project, ‘APHIDWEB: Structure, strength hand invasibility of aphid food webs,’ Grant/Award Number: 611810.

Author information

SO and BL designed the experiment, carried out the field sampling and wrote the first draft of the manuscript. SO, KS and VB conducted the laboratory experiments and data analyses. KS and MT contributed to the design of the molecular experiment, the interpretation of the data and manuscript preparation with SO and BL. All authors read and approved the manuscript.

Correspondence to Sebastián Ortiz-Martínez or Blas Lavandero.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Martínez, S., Staudacher, K., Baumgartner, V. et al. Intraguild predation is independent of landscape context and does not affect the temporal dynamics of aphids in cereal fields. J Pest Sci 93, 235–249 (2020).

Download citation


  • Diagnostic multiplex PCR
  • Aphid consumption
  • Landscape complexity
  • Gut content DNA
  • Temporal dynamics