Advertisement

Insecticidal and antibacterial effects of some essential oils against the poultry pest Alphitobius diaperinus and its associated microorganisms

  • Julieta Soledad ArenaEmail author
  • Carolina Merlo
  • María Teresa Defagó
  • Julio Alberto Zygadlo
Original Paper

Abstract

Alphitobius diaperinus is a worldwide poultry pest which causes several problems, including the dispersion of pathogenic microorganisms. This study aimed to evaluate the insecticidal activity of five essential oils (EOs) against A. diaperinus and their antimicrobial activity against some pathogenic bacteria transmitted by this insect and against the mesophilic bacteria present on its external surface. The chemical composition of the EOs was determined, with the major components being: α-thujone in Aloysia polystachya EO; limonene in Citrus sinensis EO; 1,8-cineole in Eucalyptus globulus EO; terpinolene and thymol in Origanum vulgare EO; and eugenol in Syzygium aromaticum EO. The EO of A. polystachya showed the highest fumigant activity (LC50 = 27.25 µL/L of air), followed by E. globulus EO (LC50 = 36.49 µL/L of air). The EOs of S. aromaticum, O. vulgare, and A. polystachya revealed high contact toxicity, with LC50 values of 0.052, 0.128, and 0.135 µL/cm2, respectively. In addition, EOs obtained from O. vulgare and S. aromaticum strongly inhibited the growth of Escherichia coli and Staphylococcus aureus and significantly reduced the microbial load of the insect. Syzigium aromaticum and O. vulgare affected both insects and bacteria, making them promising candidates to replace synthetic insecticides or to be incorporated into current strategies for the management of A. diaperinus, and also helping to reduce the bacteria associated with this coleopteran. To our knowledge, this is the first report of the insecticidal activity of the five selected EOs on A. diaperinus adults, as well as the effect of EOs on the microbial load of insects.

Keywords

Biopesticides Darkling beetle Natural products 

Notes

Acknowledgments

This research was supported by Fondo para la Investigación Científica y Tecnológica (FONCyT) (PICT-2016-2496), Secretaría de Ciencia y Teconología (SECyT-UNC) (33620180100129CB), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). The authors thank Dr. Paul Hobson, native speaker, for reviewing the manuscript, and Dra. Marcela A. Palacio for technical assistance. JSA has a fellowship from CONICET. CM and JAZ are researchers of CONICET, and MTD is a researcher at the Universidad Nacional de Córdoba.

Funding

This study was funded by Fondo para la Investigación Científica y Tecnológica (FONCyT) (PICT-2016-2496), and Secretaría de Ciencia y Teconología (SECyT-UNC) (33620180100129CB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies that required human or animal ethical approval.

References

  1. Abdelgaleil SAM, Mohamed MIE, Shawir MS, Abou-Taleb HK (2016) Chemical composition, insecticidal and biochemical effects of essential oils of different plant species from Northern Egypt on the rice weevil, Sitophilus oryzae L. J Pest Sci 89:219–229.  https://doi.org/10.1007/s10340-015-0665-z CrossRefGoogle Scholar
  2. Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publ, Carol StreamGoogle Scholar
  3. Agabou A, Alloui N (2010) Importance of Alphitobius diaperinus (Panzer) as a reservoir for pathogenic bacteria in Algerian broiler houses. Vet World 3:71–73Google Scholar
  4. Akami M, Njintang NY, Gbaye O, Niu CY, Nukenine EN (2019) Comparative expression of two detoxification genes by Callosobruchus maculatus in response to dichlorvos and Lippia adoensis essential oil treatments. J Pest Sci 92:665–676.  https://doi.org/10.1007/s10340-018-01075-4 CrossRefGoogle Scholar
  5. Arena JS, Omarini AB, Zunino MP, Peschiutta ML, Defagó MT, Zygadlo JA (2018) Essential oils from Dysphania ambrosioides and Tagetes minuta enhance the toxicity of a conventional insecticide against Alphitobius diaperinus. Ind Crops Prod 122:190–194.  https://doi.org/10.1016/j.indcrop.2018.05.077 CrossRefGoogle Scholar
  6. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475.  https://doi.org/10.1016/j.fct.2007.09.106 CrossRefGoogle Scholar
  7. Barbosa L, Filomeno C, Teixeira R (2016) Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 21:1671.  https://doi.org/10.3390/molecules21121671 CrossRefGoogle Scholar
  8. Benzi VS, Murray A, Ferrero AA (2009) Insecticidal and insect-repellent activities of essential oils from Verbenaceae and Anacardiaceae against Rhizopertha dominica. Nat Prod Commun 4:1287–1290Google Scholar
  9. Benzi V, Stefanazzi N, Murray AP, Werdin González JO, Ferrero A (2014) Composition, repellent, and insecticidal activities of two South American plants against the stored grain pests Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae). ISRN Entomol 2014:1–5.  https://doi.org/10.1155/2014/175827 CrossRefGoogle Scholar
  10. Cardiet G, Fuzeau B, Barreau C, Fleurat-Lessard F (2012) Contact and fumigant toxicity of some essential oil constituents against a grain insect pest Sitophilus oryzae and two fungi, Aspergillus westerdijkiae and Fusarium graminearum. J Pest Sci 85:351–358.  https://doi.org/10.1007/s10340-011-0400-3 CrossRefGoogle Scholar
  11. Chen ZY, Guo SS, Cao JQ, Pang X, Geng ZF, Wang Y, Zhang Z, Du SS (2018) Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int J Food Prop 21:2265–2275.  https://doi.org/10.1080/10942912.2018.1508158 CrossRefGoogle Scholar
  12. Chernaki-Leffer A, Biesdorf S, Almeida L, Leffer E, Vigne F (2002) Isolamento de enterobactérias em Alphitobius diaperinus e na cama de aviários no oeste do estado do Paraná, Brasil. Rev Bras Cien Avic 4:243–247CrossRefGoogle Scholar
  13. Chernaki-Leffer AM, Sosa-Gómez DR, Almeida LM, Lopes IdON (2011) Susceptibility of Alphitobius diaperinus (Panzer) (Coleoptera, Tenebrionidae) to cypermethrin, dichlorvos and triflumuron in southern Brazil. Rev Bras Entomol 55:125–128CrossRefGoogle Scholar
  14. Crippen TL, Esquivel JF (2012) Improved visualization of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)—Part II: alimentary canal components and measurements. Psyche 2012:1–8.  https://doi.org/10.1155/2012/607609 CrossRefGoogle Scholar
  15. Crippen TL, Sheffield CL, Beier RC, Nisbet DJ (2018) The horizontal transfer of Salmonella between the lesser mealworm (Alphitobius diaperinus) and poultry manure. Zoonoses Public Health 65:e23–e33.  https://doi.org/10.1111/zph.12404 CrossRefGoogle Scholar
  16. da Silva Soares CE, Weber A, Scussel VM (2018) Stereo and scanning electron microscopy characteristics of poultry breeding beetle (Alphitobius diaperinus)—a filamentous toxigenic fungi carrier. Emir J Food Agric 30:150–156.  https://doi.org/10.9755/ejfa.2018.v30.i2.1615 Google Scholar
  17. Dambolena JS, Zunino MP, Herrera JM, Pizzolitto RP, Areco VA, Zygadlo JA (2016) Terpenes: natural products for controlling insects of importance to human health—a structure–activity relationship study. Psyche 2016:1–17.  https://doi.org/10.1155/2016/4595823 CrossRefGoogle Scholar
  18. De Martino L, De Feo V, Formisano C, Mignola E, Senatore F (2009) Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart growing wild in campania (Southern Italy). Molecules 14:2735–2746.  https://doi.org/10.3390/molecules14082735 CrossRefGoogle Scholar
  19. Despins JL, Turner E, Pfeiffer DG (1991) Evaluation of methods to protect poultry house insulation from infestations by lesser mealworm (Coleoptera: Tenebrionidae). J Agric Entomol 8:209–217Google Scholar
  20. Dhouioui M, Boulila A, Chaabane H, Zina MS, Casabianca H (2016) Seasonal changes in essential oil composition of Aristolochia longa L. ssp. paucinervis Batt. (Aristolochiaceae) roots and its antimicrobial activity. Ind Crops Prod 83:301–306.  https://doi.org/10.1016/j.indcrop.2016.01.025 CrossRefGoogle Scholar
  21. Ebani VV, Nardoni S, Bertelloni F, Giovanelli S, Rocchigiani G, Pistelli L, Mancianti F (2016) Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour Fragr J 31:302–309.  https://doi.org/10.1002/ffj.3318 CrossRefGoogle Scholar
  22. Ebani V, Najar B, Bertelloni F, Pistelli L, Mancianti F, Nardoni S (2018) Chemical composition and in vitro antimicrobial efficacy of sixteen essential oils against Escherichia coli and Aspergillus fumigatus isolated from poultry. Vet Sci 5:62CrossRefGoogle Scholar
  23. El-Bakry A, Abdel-Aziz N, Sammour E, Abdelgaleil S (2016) Insecticidal activity of natural plant essential oils against some stored product insects and their side effects on wheat seed germination. Egypt J Biol Pest Control 26:83Google Scholar
  24. Gallucci MN, Oliva M, Casero C, Dambolena J, Luna A, Zygadlo J, Demo M (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr J 24:348–354.  https://doi.org/10.1002/ffj.1948 CrossRefGoogle Scholar
  25. Gonçalves Marques CR, Yatie Mikami A, Pissinati A, Boiani Piva L, Andrade Pais Santos OJ, Ursi Ventura M (2013) Mortalidade de Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) por óleos de nim e citronela. Semin Cienc Agr 34:2565–2574CrossRefGoogle Scholar
  26. Guo Q, Liu K, Deng W, Zhong B, Yang W, Chun J (2018) Chemical composition and antimicrobial activity of Gannan navel orange (Citrus sinensis Osbeck cv. Newhall) peel essential oils. Food Sci Nutr 6:1431–1437.  https://doi.org/10.1002/fsn3.688 CrossRefGoogle Scholar
  27. Hazeleger WC, Bolder NM, Beumer RR, Jacobs-Reitsma WF (2008) Darkling Beetles (Alphitobius diaperinus) and their larvae as potential vectors for the transfer of Campylobacter jejuni and Salmonella enterica Serovar Paratyphi B Variant Java between successive broiler flocks. Appl Environ Microbiol 74:6887–6891.  https://doi.org/10.1128/aem.00451-08 CrossRefGoogle Scholar
  28. Herrera J, Zunino M, Massuh Y, Pizzollito R, Dambolena J, Gañan N, Zygadlo J (2014) Fumigant toxicity of five essential oils rich in ketones against Sitophilus zeamais (Motschulsky). Agriscientia 31:35–41Google Scholar
  29. Hickmann F, de Morais AF, Bronzatto ES, Giacomelli T, Guedes JVC, Bernardi O (2018) Susceptibility of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae), from broiler farms of southern Brazil to insecticides. J Econ Entomol 111:980–985.  https://doi.org/10.1093/jee/toy059 CrossRefGoogle Scholar
  30. Kaufman PE, Strong C, Rutz DA (2008) Susceptibility of lesser mealworm (Coleoptera: Tenebrionidae) adults and larvae exposed to two commercial insecticides on unpainted plywood panels. Pest Manag Sci 64:108–111.  https://doi.org/10.1002/ps.1475 CrossRefGoogle Scholar
  31. Kim SI, Yoon JS, Jung JW, Hong KB, Ahn YJ, Kwon HW (2010) Toxicity and repellency of origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J Asia-Pac Entomol 13:369–373.  https://doi.org/10.1016/j.aspen.2010.06.011 CrossRefGoogle Scholar
  32. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84Google Scholar
  33. Koutsaviti A, Antonopoulou V, Vlassi A, Antonatos S, Michaelakis A, Papachristos DP, Tzakou O (2018) Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). J Pest Sci 91:873–886.  https://doi.org/10.1007/s10340-017-0934-0 CrossRefGoogle Scholar
  34. Lambkin TA, Furlong MJ (2011) Metabolic mechanisms only partially explain resistance to pyrethroids in Australian broiler house populations of lesser mealworm (Coleoptera: Tenebrionidae). J Econ Entomol 104:629–635.  https://doi.org/10.1603/EC10377 CrossRefGoogle Scholar
  35. Lambkin TA, Rice SJ (2006) Baseline responses of Alphitobius diaperinus (Coleoptera: Tenebrionidae) to cyfluthrin and detection of strong resistance in field populations in eastern Australia. J Econ Entomol 99:908–913.  https://doi.org/10.1603/0022-0493-99.3.908 CrossRefGoogle Scholar
  36. Lee SE, Choi WS, Lee HS, Park BS (2000) Cross-resistance of a chlorpyrifos-methyl resistant strain of Oryzaephilus surinamensis (Coleoptera: Cucujidae) to fumigant toxicity of essential oil extracted from Eucalyptus globulus and its major monoterpene, 1,8-cineole. J Stored Prod Res 36:383–389.  https://doi.org/10.1016/S0022-474X(99)00059-4 CrossRefGoogle Scholar
  37. Lee BH, Choi WS, Lee SE, Park BS (2001) Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot 20:317–320.  https://doi.org/10.1016/S0261-2194(00)00158-7 CrossRefGoogle Scholar
  38. Leffer AM, Kuttel J, Martins LM, Pedroso AC, Astolfi-Ferreira CS, Ferreira F, Ferreira AJP (2009) Vectorial competence of larvae and adults of Alphitobius diaperinus in the transmission of Salmonella enteritidis in poultry. Vector Borne Zoonotic Dis 10:481–487.  https://doi.org/10.1089/vbz.2008.0089 CrossRefGoogle Scholar
  39. Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, Izadi M, Abdollahi M, Nabavi SM, Ajami M (2017) Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol 43:668–689.  https://doi.org/10.1080/1040841X.2017.1295225 CrossRefGoogle Scholar
  40. Marcomini AM, Alves LFA, Bonini AK, Mertz NR, dos Santos JC (2009) Atividade inseticida de extratos vegetais e do óleo de nim sobre adultos de Alphitobius diaperinus Panzer (Coleoptera, Tenebrionidae). Arq Inst Biol (Sao Paulo) 76:409–416Google Scholar
  41. Martínez LC, Plata-Rueda A, Colares HC, Campos JM, Dos Santos MH, Fernandes FL, Serrão JE, Zanuncio JC (2017) Toxic effects of two essential oils and their constituents on the mealworm beetle, Tenebrio molitor. Bull Entomol Res 108:716–725.  https://doi.org/10.1017/S0007485317001262 CrossRefGoogle Scholar
  42. Mustač S, Rozman V, Škvorc V (2013) Laboratory evaluation of efficacy of several formulations to control the lesser mealworm Alphitobius diaperinus (Panzer, 1797) (Coleoptera: Tenebrionidae). Vet Arhiv 83:563–570Google Scholar
  43. Ou SC, Giambrone JJ, Macklin KS (2012) Detection of infectious laryngotracheitis virus from darkling beetles and their immature stage (lesser mealworms) by quantitative polymerase chain reaction and virus isolation. J Appl Poult Res 21:33–38.  https://doi.org/10.3382/japr.2010-00314 CrossRefGoogle Scholar
  44. Papachristos DP, Karamanoli KI, Stamopoulos DC, Menkissoglu-Spiroudi U (2004) The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag Sci 60:514–520.  https://doi.org/10.1002/ps.798 CrossRefGoogle Scholar
  45. Peschiutta ML, Arena JS, Sanchez AR, Gomez Torres E, Pizzolitto RP, Merlo C, Zunino MP, Omarini AB, Dambolena JS, Zygadlo JA (2016) Effectiveness of Mexican oregano essential oil from the Dominican Republic (Lippia graveolens) against maize pests (Sitophilus zeamais and Fusarium verticillioides). AgriScientia 33:89–97CrossRefGoogle Scholar
  46. Pizzolitto RP, Barberis CL, Dambolena JS, Herrera JM, Zunino MP, Magnoli CE, Rubinstein HR, Zygadlo JA, Dalcero AM (2015) Inhibitory effect of natural phenolic compounds on Aspergillus parasiticus growth. J Chem 2015:1–7.  https://doi.org/10.1155/2015/547925 CrossRefGoogle Scholar
  47. Prado GPD, Stefani LM, Silva ASD, Smaniotto LF, Garcia FRM, Moura NFD (2013) Alphitobius diaperinus (Coleoptera: Tenebrionidae) susceptibility to Cunila angustifolia essential oil. J Med Entomol 50:1040–1045.  https://doi.org/10.1603/ME12277 CrossRefGoogle Scholar
  48. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22CrossRefGoogle Scholar
  50. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS ONE 10:1–13.  https://doi.org/10.1371/journal.pone.0146021 CrossRefGoogle Scholar
  51. Rivera Calo J, Crandall PG, O’Bryan CA, Ricke SC (2015) Essential oils as antimicrobials in food systems—a review. Food Control 54:111–119.  https://doi.org/10.1016/j.foodcont.2014.12.040 CrossRefGoogle Scholar
  52. Russo S, Cabrera N, Chludil H, Yaber-Grass M, Leicach S (2015) Insecticidal activity of young and mature leaves essential oil from Eucalyptus globulus Labill. against Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae). Chil J Agric Res 75:375–379CrossRefGoogle Scholar
  53. Salin C, Delettre YR, Vernon P (2003) Controlling the mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae) in broiler and turkey houses: field trials with a combined insecticide treatment: insect growth regulator and pyrethroid. J Econ Entomol 96:126–130.  https://doi.org/10.1093/jee/96.1.126 CrossRefGoogle Scholar
  54. Shaaban HA, El-Ghorab AH, Shibamoto T (2012) Bioactivity of essential oils and their volatile aroma components. J Essent Oil Res 24:203–212.  https://doi.org/10.1080/10412905.2012.659528 CrossRefGoogle Scholar
  55. Sosa MdC, Salazar MJ, Zygadlo JA, Wannaz ED (2016) Effects of Pb in Tagetes minuta L. (Asteraceae) leaves and its relationship with volatile compounds. Ind Crops Prod 82:37–43.  https://doi.org/10.1016/j.indcrop.2015.12.011 CrossRefGoogle Scholar
  56. Szczepanik M, Zawitowska B, Szumny A (2012) Insecticidal activities of Thymus vulgaris essential oil and its components (thymol and carvacrol) against larvae of lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopathy J 30:129–142Google Scholar
  57. Szczepanik M, Walczak M, Zawitowska B, Michalska-Sionkowska M, Szumny A, Wawrzenczyk C, Brzezinska MS (2018) Chemical composition, antimicromicrobial activity and insecticidal activity against the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) of Origanum vulgare L. ssp. hirtum (Link) and Artemisia dracunculus L. essential oils. J Sci Food Agric 98:767–774.  https://doi.org/10.1002/jsfa.8524 CrossRefGoogle Scholar
  58. Szołyga B, Gniłka R, Szczepanik M, Szumny A (2014) Chemical composition and insecticidal activity of Thuja occidentalis and Tanacetum vulgare essential oils against larvae of the lesser mealworm, Alphitobius diaperinus. Entomol Exp Appl 151:1–10.  https://doi.org/10.1111/eea.12166 CrossRefGoogle Scholar
  59. Teixeira B, Marques A, Ramos C, Serrano C, Matos O, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML (2013) Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J Sci Food Agric 93:2707–2714.  https://doi.org/10.1002/jsfa.6089 CrossRefGoogle Scholar
  60. Tu XF, Hu F, Thakur K, Li XL, Zhang YS, Wei ZJ (2018) Comparison of antibacterial effects and fumigant toxicity of essential oils extracted from different plants. Ind Crops Prod 124:192–200.  https://doi.org/10.1016/j.indcrop.2018.07.065 CrossRefGoogle Scholar
  61. Uemura DH, Alves LFA, Opazo MAU, Alexandre TM, Oliveira DGP, Ventura MU (2008) Distribuição e dinâmica populacional do cascudinho Alphitobius diaperinus (Coleoptera: Tenebrionidae) em aviários de frango de corte. Arq Inst Biol (Sao Paulo) 75:429–435Google Scholar
  62. Volpato A, Baretta D, Zortéa T, Campigotto G, Galli GM, Glombowsky P, Santos RCV, Quatrin PM, Ourique AF, Baldissera MD, Stefani LM, Da Silva AS (2016a) Larvicidal and insecticidal effect of Cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (Alphitobius diaperinus) and its possible environmental effects. J Asia Pac Entomol 19:1159–1165.  https://doi.org/10.1016/j.aspen.2016.10.008 CrossRefGoogle Scholar
  63. Volpato A, Lorenzetti W, Zortea T, Giombelli L, Baretta D, Santos R, Vaucher R, Raffin R, Souza M, Stefani L, Boligon A, Athayde M, Silva Ad (2016b) Melaleuca alternifolia essential oil against the lesser mealworm (Alphitobius diaperinus) and its possible effect on the soil fauna. Rev Bras Cien Avic 18:41–46CrossRefGoogle Scholar
  64. Wang X, Li Q, Shen L, Yang J, Cheng H, Jiang S, Jiang C, Wang H (2014) Fumigant, contact, and repellent activities of essential oils against the darkling beetle, Alphitobius diaperinus. J Insect Sci 14:75.  https://doi.org/10.1093/jis/14.1.75 Google Scholar
  65. Zribi I, Bleton J, Moussa F, Abderrabba M (2019) GC–MS analysis of the volatile profile and the essential oil compositions of Tunisian Borago officinalis L.: regional locality and organ dependency. Ind Crops Prod 129:290–298.  https://doi.org/10.1016/j.indcrop.2018.12.021 CrossRefGoogle Scholar
  66. Zunino MP, Areco VA, Zygadlo JA (2012) Insecticidal activity of three essential oils against two new important soybean pests: Sternechus pinguis (Fabricius) and Rhyssomatus subtilis Fiedler (Coleoptera: Curculionidae). Bol Latinoam Caribe Plant Med Aromat 11:269–277Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICETCórdobaArgentina
  2. 2.Centro de Investigaciones Entomológicas de Córdoba (CIEC), Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Cátedra de Microbiología Agrícola, Departamento de Recursos Naturales, Facultad de Ciencias AgropecuariasUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Cátedra de Química Orgánica, Departamento de Química, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations