Advertisement

A complex invasion story underlies the fast spread of the invasive box tree moth (Cydalima perspectalis) across Europe

  • Audrey BrasEmail author
  • Dimitrios N. Avtzis
  • Marc Kenis
  • Hongmei Li
  • Gábor Vétek
  • Alexis Bernard
  • Claudine Courtin
  • Jérôme Rousselet
  • Alain Roques
  • Marie-Anne Auger-Rozenberg
Original Paper
  • 99 Downloads

Abstract

Many recently established non-native insect species appear to be spreading across Europe significantly faster than before. The box tree moth (Cydalima perspectalis), a native to Asia, is illustrative of this trend. First recorded in 2007 in Germany, the moth has then colonized in less than 10 years more than 30 countries in Europe and Asia Minor, causing significant damage to wild and ornamental Buxus trees. It has been hypothesized that the trade of ornamental box trees between China and Europe was responsible for the moth introduction while plant trade among European countries may have caused its rapid spread. To clarify the pest invasion history, we analyzed the genetic diversity and structure of its populations in the native and invaded ranges, using a 1495-bp fragment of the mitochondrial cytochrome oxidase I and II genes. Moth genetic diversity in Asia compared to the one observed in the invaded Europe and Asia Minor suggested that the invasive populations probably originated from eastern China. Furthermore, the high genetic diversity coupled with the spatial genetic structure in the invaded range suggested the occurrence of several introduction events, probably directly from China. Moreover, the spatial genetic structure in Europe and Asia Minor may also reflect secondary invasions within invaded range because of ornamental plant trade among European countries.

Keywords

Cydalima perspectalis Buxus Invasion Insect Ornamental plant trade Multiple introductions 

Notes

Acknowledgements

Many collaborators helped with the sampling, greatly improving this research. We would like to acknowledge Agathe Dupin, Annette Herz, Anna Maria Vettraino, Attila Haltrich, Bogdan Groza, Christian Burban, Caroline Gutleben, Cyril Kruczkowski, Christian Stauffer, Carlos Lopez Vaamonde, Delphine Fallour-Rubio, Dinka Matošević, Evangelina Chatzidimitriou, Estelle Morel, Gabrijel Seljak, Géraldine Roux, Gergely Bán, Ivanka Ivanova, Jan Soors, Jean-Claude Martin, Jean-Emmanuel Michaut, Jurate de Prins, Kahraman Ipekdal, Katalin Tuba, Liesbet Van Remoortere, Maria da Conceição de Lemos Viana Boavida, Marja Van der Straten, Milka Glavendekić, Philippe de Champsavin, Patrick Pineau, Peter Zach, Richárd Oláh, Stanislav Gomboc, Shiroma Sathyapala, Valery Shurov and Yazdanfar Ahangaran for their aid in this task. We also wish to thank Zhiheng Wang and his colleagues for letting us use their data on Buxus species distribution in China. We are grateful to Augustine Jacquard, Alizée Ribas, and Charlotte Mathieu for carrying out the DNA extraction and sequencing. This research was funded by the INCA project (INvasion fulgurante de la Pyrale du buis CydalimA perspectalis en Région Centre Val de Loire), which was financed by the Centre-Val de Loire regional government in France (Project INCA APR IR 2015 – 0009 673). This research was also supported by the Higher Education Institutional Excellence Program (1783-3/2018/FEKUTSTRAT) awarded by the Ministry of Human Capacities within the framework of plant breeding and plant protection researches of Szent István University.

Funding

This study was funded by the Centre-Val de Loire regional government in France (project INCA APR IR 2015 – 0009 673).

Compliance with ethical standards

Conflict of interest

The authors state that there is no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Specimens sampled did not involve endangered nor protected species.

Supplementary material

10340_2019_1111_MOESM1_ESM.docx (939 kb)
Supplementary material 1 (DOCX 939 kb)

References

  1. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  2. Auger-Rozenberg M-A, Boivin T, Magnoux E et al (2012) Inferences on population history of a seed chalcid wasp: invasion success despite a severe founder effect from an unexpected source population. Mol Ecol 21:6086–6103CrossRefGoogle Scholar
  3. Avise JC, Arnold J, Ball RM et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522CrossRefGoogle Scholar
  4. Bella S (2013) The box tree moth Cydalima perspectalis (Walker, 1859) continues to spread in southern Europe: new records for Italy (Lepidoptera Pyraloidea Crambidae). Redia 96:51–55Google Scholar
  5. Bengtsson BǺ (2017) Remarkable records of Microlepidoptera in Sweden during 2016. Entomol Tidskr 138:1–24Google Scholar
  6. Beshkov S, Abadjiev S, Dimitrov D (2015) Cydalima perspectalis (Walker, 1859) (Lepidoptera: Pyraloidea: Crambidae: Spilomelinae)—new invasive pest moth in Bulgaria. Entomol Rec J Var 127:18–22Google Scholar
  7. Blaik T, Hebda G, Masłowski J (2016) Cydalima perspectalis (Walker, 1859)—inwazyjny gatunek motyla w faunie Polski (Lepidoptera: Crambidae). Przyr Sudet 19:121–124Google Scholar
  8. Carter ME, Smith MT, Harrison RG (2009) Patterns of genetic variation among populations of the Asian longhorned beetle (Coleoptera: Cerambycidae) in China and Korea. Ann Entomol Soc Am 102:895–905CrossRefGoogle Scholar
  9. Casteels H, Witters J, Vandierendonck S, et al (2011) First report of Cydalima perspectalis (Lepidoptera: Crambidae) in Belgium. In: Proceedings of the 63rd international symposium on crop protection, Ghent, pp 151–155Google Scholar
  10. Ciosi M, Miller NJ, Kim KS et al (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627CrossRefGoogle Scholar
  11. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  12. Cristescu ME (2015) Genetic reconstructions of invasion history. Mol Ecol 24:2212–2225CrossRefGoogle Scholar
  13. Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Écoscience 12:316–329.  https://doi.org/10.2980/i1195-6860-12-3-316.1 CrossRefGoogle Scholar
  14. Dehnen-Schmutz K, Holdenrieder O, Jeger MJ, Pautasso M (2010) Structural change in the international horticultural industry: some implications for plant health. Sci Hortic 125:1–15CrossRefGoogle Scholar
  15. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefGoogle Scholar
  16. EPPO (2012). EPPO Technical Document No. 1061, EPPO Study on the Risk of Imports of Plants for Planting EPPO ParisGoogle Scholar
  17. Eschen R, Grégoire J-C, Hengeveld GM et al (2015) Trade patterns of the tree nursery industry in Europe and changes following findings of citrus longhorn beetle, Anoplophora chinensis Forster. NeoBiota 26:1–20CrossRefGoogle Scholar
  18. Eschen R, Douma JC, Grégoire J-C et al (2017) A risk categorisation and analysis of the geographic and temporal dynamics of the European import of plants for planting. Biol Invasions 19:3243–3257CrossRefGoogle Scholar
  19. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130CrossRefGoogle Scholar
  20. Estoup A, Ravigné V, Hufbauer R et al (2016) Is there a genetic paradox of biological invasion? Annu Rev Ecol Evol Syst 47:51–72CrossRefGoogle Scholar
  21. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  22. Fang J, Wang Z, Tang Z (eds) (2011) Atlas of woody plants in China: distribution and climate. Springer, HeidelbergGoogle Scholar
  23. Feldtrauer J-F, Feltrauer J-J, Brua C (2009) Premiers signalements en France de la Pyrale du Buis Diaphania perspectalis (Walker, 1859), espèce exotique envahissante s’attaquant aux Buis. Bull Soc ent Mulhouse 65:55–58Google Scholar
  24. Fraimout A, Debat V, Fellous S et al (2017) Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol Biol Evol 34:980–996Google Scholar
  25. Gariepy TD, Haye T, Fraser H, Zhang J (2014) Occurrence, genetic diversity, and potential pathways of entry of Halyomorpha halys in newly invaded areas of Canada and Switzerland. J Pest Sci 87:17–28CrossRefGoogle Scholar
  26. Gariepy TD, Bruin A, Haye T et al (2015) Occurrence and genetic diversity of new populations of Halyomorpha halys in Europe. J Pest Sci 88:451–460CrossRefGoogle Scholar
  27. Garnas JR, Auger-Rozenberg M-A, Roques A et al (2016) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions 18:935–952CrossRefGoogle Scholar
  28. Gninenko YI, Shiryaeva NV, Shurov VI (2014) The box tree moth—a new invasive pest in the Caucasian Forests. Plant Health Res Pract 1:32–39Google Scholar
  29. Gutue C, Gutue M, Rosca I (2014) Crambidae associated with parks and ornamental gardens of Bucharest. Horticulture LVIII:323–326Google Scholar
  30. Hizal E, Kose M, Yesil C, Kaynar D (2012) The new pest Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) in Turkey. J Anim Vet Adv 11:400–403CrossRefGoogle Scholar
  31. Hrnčić S, Radonjić S, Perović T (2017) The impact of alien horticultural pests on urban landscape in the southern part of Montenegro. Acta Zool Bulg 9:191–202Google Scholar
  32. Huang H-S, Su T, Zhou Z-K (2018) Fossil leaves of Buxus (Buxaceae) from the Upper Pliocene of Yunnan, SW China. Palaeoworld 27:271–281CrossRefGoogle Scholar
  33. Javal M, Roques A, Haran J et al (2017) Complex invasion history of the Asian long-horned beetle: fifteen years after first detection in Europe. J Pest Sci 5:4.  https://doi.org/10.1007/s10340-017-0917-1 Google Scholar
  34. John R, Schumacher J (2013) Der Buchsbaum-Zünsler (Cydalima perspectalis) im Grenzach-Wyhlener Buchswald—Invasionschronik und Monitoringergebnisse. Gesunde Pflanz 65:1–6CrossRefGoogle Scholar
  35. Kawazu K, Honda H, Nakamura S, Adati T (2007) Identification of sex pheromone components of the box tree pyralid, Glyphodes perspectalis. J Chem Ecol 33:1978–1985CrossRefGoogle Scholar
  36. Kenis M, Rabitsch W, Auger-Rozenberg M-A, Roques A (2007) How can alien species inventories and interception data help us prevent insect invasions? Bull Entomol Res 97:489–502CrossRefGoogle Scholar
  37. Kenis M, Nacambo S, Leuthardt F et al (2013) The box tree moth Cydalima perspectalis, in Europe: horticultural pest or environmental disaster? Aliens 33:38–41Google Scholar
  38. Kenis M, Li H, Fan J et al (2018) Sentinel nurseries to assess the phytosanitary risks from insect pests on importations of live plants. Sci Rep 8:11217CrossRefGoogle Scholar
  39. Kim J, Park I-K (2013) Female sex pheromone components of the box tree pyralid, Glyphodes perspectalis, in Korea: field test and development of film-type lure. J Asia-Pac Entomol 16:473–477CrossRefGoogle Scholar
  40. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  41. Kirichenko N, Triberti P, Ohshima I et al (2017) From east to west across the Palearctic: phylogeography of the invasive lime leaf miner Phyllonorycter issikii (Lepidoptera: Gracillariidae) and discovery of a putative new cryptic species in East Asia. PLoS ONE 12:e0171104CrossRefGoogle Scholar
  42. Koren T, Crne M (2012) The first record of the box tree moth, Cydalima perspectalis (Walker, 1859) (Lepidoptera, Crambidae) in Croatia. Nat Croat 21:507Google Scholar
  43. Krüger EO (2008) Glyphodes perspectalis (Walker, 1859)—new for the European fauna (Lepidoptera: Crambidae). Entomol Z Mit Insekten-Börse 118:81–83Google Scholar
  44. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306CrossRefGoogle Scholar
  45. Lawson Handley L-J, Estoup A, Evans DM et al (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428CrossRefGoogle Scholar
  46. Lesieur V, Lombaert E, Guillemaud T, Courtial B, Strong W, Roques A, Auger-Rozenberg M-A (2019) The rapid spread of Leptoglossus occidentalis in Europe: a bridgehead invasion. J Pest Sci 92:189–200CrossRefGoogle Scholar
  47. Leuthardt FLG, Baur B (2013) Oviposition preference and larval development of the invasive moth Cydalima perspectalis on five European box-tree varieties. J Appl Entomol 137:437–444CrossRefGoogle Scholar
  48. Leuthardt F, Billen W, Baur B (2010) Ausbreitung des Buchsbaumzünslers Diaphania perspectalis (Lepidoptera, Pyralidae) in der Region Basel–eine für die Schweiz neue Schädlingsart. Entomo Helvetica 3:51–57Google Scholar
  49. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  50. Lombaert E, Guillemaud T, Cornuet J-M et al (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS ONE 5:e9743CrossRefGoogle Scholar
  51. Lombaert E, Guillemaud T, Thomas CE et al (2011) Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: case study of the invasive ladybird Harmonia axyridis. Mol Ecol 20:4654–4670.  https://doi.org/10.1111/j.1365-294X.2011.05322.x CrossRefGoogle Scholar
  52. Lozier JD, Roderick GK, Mills NJ (2009) Tracing the invasion history of mealy plum aphid, Hyalopterus pruni (Hemiptera: Aphididae), in North America: a population genetics approach. Biol Invasions 11:299–314CrossRefGoogle Scholar
  53. Lu J, Li S, Wu Y, Jiang L (2018) Are Hong Kong and Taiwan stepping-stones for invasive species to the mainland of China? Ecol Evol 8:1966–1973CrossRefGoogle Scholar
  54. Ma F, Wang Q, Dong J et al (2015) Buxus leaves from the Oligocene of Guangxi, China and their biogeographical significance. Acta Geol Sin Engl Ed 89:1453–1469CrossRefGoogle Scholar
  55. Marsico TD, Wallace LE, Ervin GN et al (2011) Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum (Berg) support the documented history of invasion and multiple introductions for invasive populations. Biol Invasions 13:857–868CrossRefGoogle Scholar
  56. Maruyama T, Shinkaji N (1987) Studies on the life cycle of the box-tree pyralid, Glyphodes perspectalis (Walker) (Lepidoptera: Pyralidae). I. Seasonal adult emergence and developmental velocity. Jpn J Appl Entomol Zool 31:226–232CrossRefGoogle Scholar
  57. Matošević D (2013) Box tree moth (Cydalima perspectalis, Lepidoptera; Crambidae), new invasive insect pest in Croatia. South-East Eur For 4:89–94CrossRefGoogle Scholar
  58. Matošević D, Lukić I, Bras A et al (2017) Spatial distribution, genetic diversity and food choice of box tree moth (Cydalima perspectalis) in Croatia. South-East Eur For 8:41–46Google Scholar
  59. Matsiakh I, Kramarets V, Mamadashvili G (2018) Box tree moth Cydalima perspectalis as a threat to the native populations of Buxus colchica in Republic of Georgia. J Entomol Res Soc 20:29–42Google Scholar
  60. Meng X-F, Shi M, Chen X-X (2008) Population genetic structure of Chilo suppressalis (Walker) (Lepidoptera: Crambidae): strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Mol Ecol 17:2880–2897CrossRefGoogle Scholar
  61. Meurisse N, Rassati D, Hurley BP, Brockerhoff EG, Haack RA (2019) Common pathways by which non-native forest insects move internationally and domestically. J Pest Sci 92:13–27CrossRefGoogle Scholar
  62. Mitchell R, Chitanava S, Dbar R et al (2018) Identifying the ecological and societal consequences of a decline in Buxus forests in Europe and the Caucasus. Biol Invasions 20:3605–3620CrossRefGoogle Scholar
  63. Muirhead JR, Gray DK, Kelly DW et al (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035CrossRefGoogle Scholar
  64. Nacambo S, Leuthardt FLG, Wan H et al (2014) Development characteristics of the box-tree moth Cydalima perspectalis and its potential distribution in Europe. J Appl Entomol 138:14–26CrossRefGoogle Scholar
  65. Načeski S, Papazova-Anakieva I, Ivanov B et al (2018) Occurrence of the new invasive insect Cydalima perspectalis Walker on box tree in the Republic of Macedonia. Contrib Sect Nat Math Biotech Sci 39:133Google Scholar
  66. Nagy A, Szarukán I, Csabai J et al (2017) Distribution of the box tree moth (Cydalima perspectalis Walker 1859) in the north-eastern part of the Carpathian Basin with a new Ukrainian record and Hungarian data. Eppo Bull 47:279–282CrossRefGoogle Scholar
  67. Orlova-Bienkowskaja MJ, Volkovitsh MG (2018) Are native ranges of the most destructive invasive pests well known? A case study of the native range of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). Biol Invasions 20:1275–1286CrossRefGoogle Scholar
  68. Orlova-Bienkowskaja MJ, Ukrainsky AS, Brown PMJ (2015) Harmonia axyridis (Coleoptera: Coccinellidae) in Asia: a re-examination of the native range and invasion to southeastern Kazakhstan and Kyrgyzstan. Biol Invasions 17:1941–1948CrossRefGoogle Scholar
  69. Ostojić I, Zovko M, Petrović D, Elez D (2015) New records of box tree moth Cydalima perspectalis (Walker, 1859) in Bosnia and Herzegovina. Works Fac Agric Food Sci Univ Sarajevo 60:139–143Google Scholar
  70. Pérez-Otero R, Mansilla JP, Vidal M (2015) Distribution of the box tree moth (Cydalima perspectalis Walker 1859) in the north-eastern part of the Carpathian Basin with a new Ukrainian record and Hungarian data. Arq Entomoloxicos 10:225–228Google Scholar
  71. Pons O, Petit RJ (1996) Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245Google Scholar
  72. Ries C, Arendt A, Braunet C et al (2017) Environmental impact assessment and black, watch and alert list classification after the ISEIA Protocol of invertebrates in Luxembourg. Bull Soc Nat Luxemb 119:63–70Google Scholar
  73. Roques A (2010a) Taxonomy, time and geographic patterns. Chapter 2. BioRisk 4:11–26CrossRefGoogle Scholar
  74. Roques A (2010b) Alien forest insects in a warmer world and a globalised economy: impacts of changes in trade, tourism and climate on forest biosecurity. N Z J For Sci 40:77–94Google Scholar
  75. Roques A, Auger-Rozenberg M-A, Blackburn TM et al (2016) Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biol Invasions 18:907–920CrossRefGoogle Scholar
  76. Sáfián S, Horváth B (2011) Box tree moth–Cydalima perspectalis (Walker, 1859), new member in the Lepidoptera fauna of Hungary (Lepidoptera: Crambidae). Nat Somogyiensis 19:245–246Google Scholar
  77. Salisbury A, Korycinska A, Halstead AJ (2012) The first occurrence of larvae of the box tree moth, Cydalima perspectalis (Lepidoptera: Crambidae) in private gardens in the UK. Br J Entomol Nat Hist 25:1Google Scholar
  78. Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435CrossRefGoogle Scholar
  79. Seebens H, Blackburn TM, Dyer EE et al (2018) Global rise in emerging alien species results from increased accessibility of new source pools. Proc Natl Acad Sci 115:E2264–E2273CrossRefGoogle Scholar
  80. Seljak G (2012) Six new alien phytophagous insect species recorded in Slovenia in 2011. Acta Entomol Slov 20:31–44Google Scholar
  81. Simberloff D, Martin J-L, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66CrossRefGoogle Scholar
  82. Song W, Cao L-J, Li B-Y et al (2018) Multiple refugia from penultimate glaciations in East Asia demonstrated by phylogeography and ecological modelling of an insect pest. BMC Evol Biol 18:152CrossRefGoogle Scholar
  83. Stone GN, Challis RJ, Atkinson RJ et al (2007) The phylogeographical clade trade: tracing the impact of human-mediated dispersal on the colonization of northern Europe by the oak gallwasp Andricus kollari. Mol Ecol 16:2768–2781CrossRefGoogle Scholar
  84. Strachinis I, Kazilas C, Karamaouna F et al (2015) First record of Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) in Greece. Hell Plant Prot J 8:66–72Google Scholar
  85. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  86. Vajgand D (2016) Contribution to the study of Lepidoptera of Čelarevo (Vojvodina, Serbia). Acta Entomol Serbica 21:49–92Google Scholar
  87. van Boheemen LA, Lombaert E, Nurkowski KA et al (2017) Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol Ecol 26:5421–5434CrossRefGoogle Scholar
  88. Van der Straten MJ, Muus TS (2010) The box tree pyralid, Glyphodes perspectalis (Lepidoptera: Crambidae), an invasive alien moth ruining box trees. Proc Neth Entomol Soc Meet 21:107–111Google Scholar
  89. Van Kleunen M, Essl F, Pergl J et al (2018) The changing role of ornamental horticulture in alien plant invasions. Biol Rev 93:1421–1437CrossRefGoogle Scholar
  90. van Valkenburg J, Brunel S, Brundu G et al (2014) Is terrestrial plant import from East Asia into countries in the EPPO region a potential pathway for new emerging invasive alien plants? EPPO Bull 44:195–204CrossRefGoogle Scholar
  91. Wan H, Haye T, Kenis M et al (2014) Biology and natural enemies of Cydalima perspectalis in Asia: is there biological control potential in Europe? J Appl Entomol 138:14–26CrossRefGoogle Scholar
  92. Xiao H-J, Xin H-Q, Zhu X-F, Xue F-S (2011) Photoperiod and temperature of diapause induction in Diaphania perspectalis (Lepidoptera: Pyralidae). Chin J Appl Entomol 48:116–120Google Scholar
  93. Zhu L, Wu X, Wu C (2011) Phylogeographic history of the swallowtail Papilio bianor Cramer (Lepidoptera: Papilionidae) from China. Orient Insects 45:93–102CrossRefGoogle Scholar
  94. Zhu B-J, Liu Q-N, Dai L-S et al (2013) Characterization of the complete mitochondrial genome of Diaphania pyloalis (Lepidoptera: Pyralididae). Gene 527:283–291.  https://doi.org/10.1016/j.gene.2013.06.035 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Audrey Bras
    • 1
    Email author
  • Dimitrios N. Avtzis
    • 2
  • Marc Kenis
    • 3
  • Hongmei Li
    • 4
  • Gábor Vétek
    • 5
  • Alexis Bernard
    • 1
  • Claudine Courtin
    • 1
  • Jérôme Rousselet
    • 1
  • Alain Roques
    • 1
  • Marie-Anne Auger-Rozenberg
    • 1
  1. 1.INRAUR633 Unité de Recherche de Zoologie ForestièreOrleans Cedex 2France
  2. 2.Forest Research InstituteHellenic Agricultural Organization DemeterThessaloníkiGreece
  3. 3.CABIDelémontSwitzerland
  4. 4.MoA-CABI Joint Laboratory for Biosafety, Institute of Plant ProtectionChinese Academy of Agriculture SciencesBeijingChina
  5. 5.Department of Entomology, Faculty of Horticultural ScienceSzent István UniversityBudapestHungary

Personalised recommendations