Advertisement

The olfactive responses of Tetranychus urticae natural enemies in citrus depend on plant genotype, prey presence, and their diet specialization

  • Marc Cabedo-López
  • Joaquín Cruz-Miralles
  • Sandra Vacas
  • Vicente Navarro-Llopis
  • Meritxell Pérez-Hedo
  • Víctor Flors
  • Josep A. JaquesEmail author
Original Paper

Abstract

Sour orange, Citrus aurantium, displays higher constitutive and earlier inducible direct defenses against the two-spotted spider mite, Tetranychus urticae, than Cleopatra mandarin, Citrus reshni. Moreover, herbivore-induced plant volatiles (HIPVs) produced by sour orange upon infestation can induce resistance in Cleopatra mandarin but not vice versa. Because the role of these HIPVs in indirect resistance remains ignored, we have carried out a series of behavioral assays with three predatory mites with different levels of specialization on this herbivore, from strict entomophagy to omnivory. We have further characterized the volatile blend associated with T. urticae, which interestingly includes the HIPV methyl salicylate, as well as that produced by induced Cleopatra mandarin plants. Although a preference for less defended plants with presumably higher prey densities (i.e., C. reshni) was expected, this was not always the case. Because predators’ responses changed with diet width, with omnivore predators responding to both HIPVs and prey-related odors and specialized ones mostly to prey, our results reveal that these responses depend on plant genotype, prey presence and predator diet specialization. As the different volatile blends produced by infested sour orange, induced Cleopatra mandarin and T. urticae itself are attractive to T. urticae natural enemies but not to the herbivore, they may provide clues to develop new more sustainable tools to manipulate these agriculturally relevant species.

Keywords

Sour orange Cleopatra mandarin Phytoseiulus persimilis Neoseiulus californicus Euseius stipulatus HIPV 

Notes

Acknowledgements

The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness (AGL2014-55616-C3; AGL2015-64990-2R). The authors thank M. Piquer (UJI) for technical assistance. MC received a pre-doctoral fellowship from the Spanish Ministry of Economy and Competitiveness (BES-2015-074570), and MP was the recipient of a research fellowship from INIA, Spain (subprogram DOC INIA-CCAA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

10340_2019_1107_MOESM1_ESM.tif (268 kb)
Supplementary material 1 (TIFF 267 kb)
10340_2019_1107_MOESM2_ESM.tif (181 kb)
Supplementary material 2 (TIFF 180 kb)
10340_2019_1107_MOESM3_ESM.docx (28 kb)
Supplementary material 3 (DOCX 27 kb)

References

  1. Abad-Moyano R, Pina T, Ferragut F, Urbaneja A (2009) Comparative life-history traits of three phytoseiid mites associated with Tetranychus urticae (Acari: tetranychidae) colonies in clementine orchards in eastern Spain: implications for biological control. Exp Appl Acarol 47:121–132CrossRefGoogle Scholar
  2. Adar E, Inbar M, Gal S, Doron N, Zhang ZQ, Palevsky E (2012) Plant-feeding and non-plant feeding phytoseiids: differences in behavior and cheliceral morphology. Exp Appl Acarol 58:341–357CrossRefGoogle Scholar
  3. Aguilar-Fenollosa E, Ibáñez-Gual MV, Pascual-Ruiz S, Hurtado M, Jacas JA (2011) Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (I): bottom-up regulation mechanisms. Biol Control 59:158–170CrossRefGoogle Scholar
  4. Agut B, Gamir J, Jacas JA, Hurtado M, Flors V (2014) Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest Manag Sci 70:1728–1741CrossRefGoogle Scholar
  5. Agut B, Gamir J, Jaques JA, Flors V (2015) Tetranychus urticae-triggered responses promote genotype-dependent conspecific repellence or attractiveness in citrus. New Phytol 207:790–804CrossRefGoogle Scholar
  6. Agut B, Gamir J, Jaques JA, Flors V (2016) Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. J Exp Bot 67:5711–5723CrossRefGoogle Scholar
  7. Alfaro C, Vacas S, Zarzo M, Navarro-Llopis V, Primo J (2011) Solid phase microextraction of volatile emissions of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae): influence of fly sex, age, and mating status. J Agric Food Chem 59:298–306CrossRefGoogle Scholar
  8. Aljbory Z, Chen MS (2018) Indirect plant defense against insect herbivores: a review. Insect Sci 25:2–23CrossRefGoogle Scholar
  9. Andersson J, Borg-Karlson AK, Wiklund C (2000) Sexual cooperation and conflict in butterflies: a male-transferred anti-aphrodisiac reduces harassment of recently mated females. Proc R Soc Lond B 267:1271CrossRefGoogle Scholar
  10. Andersson J, Borg-Karlson AK, Wiklund C (2003) Antiaphrodisiacs in pierid butterflies: a theme with variation! J Chem Ecol 29:1489–1499CrossRefGoogle Scholar
  11. Bakke A, Froyen P, Skattebol L (1977) Field response to a new pheromonal compound isolated from Ips typographus. Naturwissenschaften 64:98CrossRefGoogle Scholar
  12. Bañuls J, Serna MD, Legaz F, Talon M, Primo-Millo E (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199CrossRefGoogle Scholar
  13. Bowers WW, Gries G, Borden JH, Pierce HD (1991) 3-Methyl-3-buten-1-ol: an aggregation pheromone of the four-eyed spruce bark beetle, Polygraphus rufipennis (Kirby) (Coleoptera: Scolytidae). J Chem Ecol 17:1989–2002CrossRefGoogle Scholar
  14. Bruessow F, Asins MJ, Jacas JA, Urbaneja A (2010) Replacement of CTV susceptible sour orange rootstock by CTV-tolerant ones may have triggered outbreaks of Tetranychus urticae in Spanish citrus. Agric Ecosyst Environ 137:93–98CrossRefGoogle Scholar
  15. Bruin J, Dicke M, Sabelis MW (1992) Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48:525–529CrossRefGoogle Scholar
  16. Bruinsma M, Van Broekhoven S, Poelman EH, Posthumus MA, Müller MJ, Van Loon JJ, Dicke M (2010) Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects. Oecologia 162:393–404CrossRefGoogle Scholar
  17. Cambra M, Gorris MT, Marroquın C, Román MP, Olmos A, Martınez MC, Hermoso de Mendoza A, López A, Navarro L (2000) Incidence and epidemiology of Citrus tristeza virus in the Valencian community of Spain. Virus Res 71:85–95CrossRefGoogle Scholar
  18. Castro-Vázquez L, Díaz-maroto MC, González-Viñas MA, Pérez-Coello M (2009) Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem 112:1022–1030CrossRefGoogle Scholar
  19. Clavijo McCormick A, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310CrossRefGoogle Scholar
  20. Cortés LE, Weldegergis BT, Boccalandro HE, Dicke M, Ballaré CL (2016) Trading direct for indirect defense? Phytochrome B inactivation in tomato attenuates direct anti-herbivore defenses whilst enhancing volatile-mediated attraction of predators. New Phytol 212:1057–1071CrossRefGoogle Scholar
  21. De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271CrossRefGoogle Scholar
  22. Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predatorprey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118CrossRefGoogle Scholar
  23. Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109CrossRefGoogle Scholar
  24. Dötterl S, Burkhardt D, Weißbecker B, Jürgens A, Schütz S, Mosandl A (2006) Linalool and lilac aldehyde/alcohol in flower scents: electrophysiological detection of lilac aldehyde stereoisomers by a moth. J Chromatogr A 1113:231–238CrossRefGoogle Scholar
  25. Gómez-Martínez MA, Jaques JA, Ibáñez-Gual MV, Pina T (2018) When the ground cover brings guests: is Anaphothrips obscurus a friend or a foe for the biological control of Tetranychus urticae in clementines? J Pest Sci 91:613–623CrossRefGoogle Scholar
  26. Hoy MA (2011) Agricultural acarology: introduction to integrated mite management. CRC Press (Taylor and Francis Group), Boca RatonCrossRefGoogle Scholar
  27. Huffaker C, Van de Vrie M, McMurtry J (1970) Ecology of tetranychid mites and their natural enemies: a review: II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia 40:391–458CrossRefGoogle Scholar
  28. Jacas JA, Urbaneja A (2010) Biological control in citrus in Spain: from classical to conservation biological control. In: Ciancio A, Mukerij KG (eds) Integrated management of arthropod pests and insect borne diseases. Springer, Dordrecht, pp 61–72Google Scholar
  29. Jerković I, Molnar M, Vidović S, Vladić J, Jokić S (2017) Supercritical CO2 extraction of Lavandula angustifolia Mill. Flowers: optimisation of oxygenated monoterpenes, coumarin and herniarin content. Phytochem Anal 28:558–566CrossRefGoogle Scholar
  30. Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495CrossRefGoogle Scholar
  31. Kant MR, Sabelis MW, Haring MA, Schuurink RC (2008) Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proc R Soc Lond B Biol Sci 275:443–452CrossRefGoogle Scholar
  32. Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control 60:77–89CrossRefGoogle Scholar
  33. Kawazu K, Mochizuki A, Sato Y, Sugeno W, Murata M, Seo S, Mitsuhara I (2012) Different expression profiles of jasmonic acid and salicylic acid inducible genes in the tomato plant against herbivores with various feeding modes. Arthropod-Plant Interact 6:221–230CrossRefGoogle Scholar
  34. Kiefer E, Heller W, Ernst D (2000) A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites. Plant Mol Biol Rep 18:33–39CrossRefGoogle Scholar
  35. Koricheva J, Nykänen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163:E64–E75CrossRefGoogle Scholar
  36. Mallinger RE, Hogg DB, Gratton C (2011) Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J Econ Entomol 104:115–124CrossRefGoogle Scholar
  37. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321CrossRefGoogle Scholar
  38. McMurtry JA, Moraes GJD, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320CrossRefGoogle Scholar
  39. Migeon A, Dorkeld F (2006–2017) Spider Mites Web: a comprehensive database for the Tetranychidae. http://www.montpellier.inra.fr/CBGP/spmweb. Accessed 13 April 2018
  40. Oku K, Weldegergis BT, Poelman EH, De Jong PW, Dicke M (2015) Altered volatile profile associated with precopulatory mate guarding attracts spider mite males. J Chem Ecol 41:187–193CrossRefGoogle Scholar
  41. Pascual-Ruiz S, Aguilar-Fenollosa E, Ibáñez-Gual V, Hurtado-Ruiz MA, Martínez-Ferrer MT, Jacas JA (2014) Economic threshold for Tetranychus urticae (Acari: Tetranychidae) in clementine mandarins Citrus clementina. Exp Appl Acarol 62:337–362CrossRefGoogle Scholar
  42. Pellissier L, Moreira X, Danner H, Serrano M, Salamin N, Dam NM, Rasmann S (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J Ecol 104:1116–1125CrossRefGoogle Scholar
  43. Pérez-Sayas C, Pina T, Gómez-Martínez MA, Camañes G, Ibáñez-Gual MV, Jaques JA, Hurtado MA (2015) Disentangling mite predator-prey relationships by multiplex PCR. Mol Ecol Resour 15:1330–1345CrossRefGoogle Scholar
  44. Peron G, Baldan V, Sut S, Faggian M, Roccabruna L, Zanini D, Manzini P, Maggi F, Dall’Acqua S (2017) Phytochemical investigations on Artemisia alba Turra growing in the North-East of Italy. Nat Prod Res 31:1861–1868CrossRefGoogle Scholar
  45. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308CrossRefGoogle Scholar
  46. Rasmann S, Erwin AC, Halitschke R, Agrawal AA (2011) Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J Ecol 99:16–25CrossRefGoogle Scholar
  47. Reddy GV, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261CrossRefGoogle Scholar
  48. Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343CrossRefGoogle Scholar
  49. Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294–303CrossRefGoogle Scholar
  50. Rowen E, Gutensohn M, Dudareva N, Kaplan I (2017) Carnivore attractant or plant elicitor? Multifunctional roles of methyl salicylate lures in tomato defense. J Chem Ecol 43:573–585CrossRefGoogle Scholar
  51. Sabelis MW, Baan HVD (1983) Location of distant spider mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol Exp Appl 33:303–314CrossRefGoogle Scholar
  52. Sabelis MW, Vermaat JE, Groeneveld A (1984) Arrestment responses of the predatory mite, Phytoseiulus persimilis, to steep odour gradients of a kairomone. Physiol Entomol 9:437–446CrossRefGoogle Scholar
  53. Salamanca J, Souza B, Lundgren JG, Rodriguez-Saona C (2017) From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 27:51–63CrossRefGoogle Scholar
  54. Shimoda T (2010) A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus urticae. Exp Appl Acarol 50:9–22CrossRefGoogle Scholar
  55. Stoakley JT, Bakke A, Renwick JAA, Vité JP (1978) The aggregation pheromone system of the larch beetle, lps cembrae Heer. Z Angew Entomol 86:174–177CrossRefGoogle Scholar
  56. Van Den Boom CE, Van Beek TA, Posthumus MA, De Groot A, Dicke M (2004) Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J Chem Ecol 30:69–89CrossRefGoogle Scholar
  57. Van Wijk M, De Bruijn PJ, Sabelis MW (2008) Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. J Chem Ecol 34:791–803CrossRefGoogle Scholar
  58. Van Wijk M, De Bruijn PJ, Sabelis MW (2011) Complex odor from plants under attack: herbivore’s enemies react to the whole, not its parts. PLoS ONE 6:e21742CrossRefGoogle Scholar
  59. Wallis C, Eyles A, Chorbadjian R, McSpadden-Gardener B, Hansen R, Cipollini D, Herms DA, Bonello P (2008) Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytol 177:767–778CrossRefGoogle Scholar
  60. Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V (2014) Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. Plant Physiol 164:384–399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unitat Associada d’Entomologia Agrícola UJI-IVIA, Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume I (UJI)Castelló de la PlanaSpain
  2. 2.Centro de Ecología Química Agrícola – Instituto Agroforestal del MediterráneoUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Unitat Associada d’Entomologia Agrícola UJI-IVIA, Institut Valencià d’Investigacions Agràries (IVIA)Centre de Protecció Vegetal i BiotecnologiaMontcadaSpain
  4. 4.Integración Metabólica y Señalización Celular, Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume I (UJI)Castelló de la PlanaSpain

Personalised recommendations