Advertisement

Harbouring the secondary endosymbiont Regiella insecticola increases predation risk and reproduction in the cereal aphid Sitobion avenae

  • Guillermo E. Ramírez-Cáceres
  • Mario G. Moya-Hernández
  • Manuel Quilodrán
  • Roberto F. Nespolo
  • Ricardo Ceballos
  • Cristian A. Villagra
  • Claudio C. RamírezEmail author
Original Paper
  • 2 Downloads

Abstract

Symbiosis in insects has been recognized as contributing to their ecological and evolutionary success. In the case of agricultural pests, endosymbionts may help insects colonize and expand their niches, allowing them to use different crops and to confront climatic variation. Moreover, endosymbionts provide improved defences against pathogens, predators, and parasitoids. In aphids, facultative endosymbionts have been found capable of generating these characteristics. However, evidence for this has been gathered from only a few model organisms. Here, we studied the effect of the facultative endosymbiont Regiella insecticola on the predation of Sitobion avenae clones by the ladybird Hippodamia variegata. In the laboratory, we assessed the predation rate of this coccinellid and the concomitant anti-predator behaviour of S. avenae with and without R. insecticola. We also evaluated the effect of the presence of this endosymbiont on the constitutive levels of E-β-farnesene, on the metabolic rate, and on the reproductive performance of S. avenae. All these traits were studied on two common alternative crops: wheat and barley. We found that R. insecticola-infected aphids were more predated irrespective of host plants and did not improve defences against coccinellid predators or metabolic rates on any host plants. Levels of E-β-farnesene were higher on wheat plants, irrespective of the presence of R. insecticola. Interestingly, R. insecticola-infected aphids had increased performance on wheat, while the opposite was true on barley. We discuss our findings based on the importance of secondary symbionts as providers of traits allowing aphids to be very invasive crop pests worldwide.

Keywords

Symbiosis Metabolic rate Predator Multitrophic interactions 

Notes

Acknowledgements

We thank Francisca Zepeda-Paulo for allowing the use of the aphid clone she collected and maintained in the laboratory. This work was funded by FONDECYT grants 1131008 to CCR and Iniciativa Científica Milenio NC120027.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alleyne M, Chappell MA, Gelman DB, Beckage NE (1997) Effects of parasitism by the braconid wasp Cotesia congregata on metabolic rate in host larvae of the tobacco hornworm, Manduca sexta. J Insect Physiol 4:143–154.  https://doi.org/10.1016/S0022-1910(96)00090-X CrossRefGoogle Scholar
  2. Apablaza JU (1974) Presencia de Macrosiphum Sitobium avenae (Fabricius) (Homoptera, Aphididae) en sementeras de trigo en Chile. Cien Inv Agric 1:69–70CrossRefGoogle Scholar
  3. Byers JA (2005) A cost of alarm pheromone production in cotton aphids, Aphis gossypii. Naturwissenschaften 92:69–72.  https://doi.org/10.1007/s00114-004-0592-y CrossRefGoogle Scholar
  4. Castañeda LE, Figueroa CC, Fuentes-Contreras E, Niemeyer HM, Nespolo RF (2009) Energetic costs of detoxification systems in herbivores feeding on chemically defended host plants: a correlational study in the grain aphid, Sitobion avenae. J Exp Biol 212:1185–1190.  https://doi.org/10.1242/jeb.020990 CrossRefGoogle Scholar
  5. Castañeda LE, Sandrock C, Vorburger C (2010a) Variation and covariation of life history traits in aphids are related to infection with the facultative bacterial endosymbiont Hamiltonella defensa. Biol J Linnean Soc 100:237–247.  https://doi.org/10.1111/j.1095-8312.2010.01416.x CrossRefGoogle Scholar
  6. Castañeda LE, Figueroa CC, Nespolo RF (2010b) Do insect pests perform better on highly defended plants? Costs and benefits of induced detoxification defences in the aphid Sitobion avenae. J Evol Biol 23:2474–2483.  https://doi.org/10.1111/j.1420-9101.2010.02112.x CrossRefGoogle Scholar
  7. Castañeda LE, Figueroa CC, Bacigalupe LD, Nespolo RF (2010c) Effects of wing polyphenism, aphid genotype and host plant chemistry on energy metabolism of the grain aphid, Sitobion avenae. J Insect Physiol 56:1920–1924.  https://doi.org/10.1016/j.jinsphys.2010.08.015 CrossRefGoogle Scholar
  8. Chen DQ, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. Kondoi. Entomol Exp Appl 95:315–323.  https://doi.org/10.1046/j.1570-7458.2000.00670.x CrossRefGoogle Scholar
  9. Dion E, Polin SE, Simon JC, Outreman Y (2011) Symbiont infection affects aphid defensive behaviours. Biol Lett 7:743–746.  https://doi.org/10.1098/rsbl.2011.0249 CrossRefGoogle Scholar
  10. Dixon AFG (2012) Aphid ecology an optimization approach. Springer, BerlinGoogle Scholar
  11. Edwards JS (1966) Defence by smear: supercooling in the cornicle wax of aphids. Nature 211:73.  https://doi.org/10.1038/211073a0 CrossRefGoogle Scholar
  12. Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant Microbe Interact 27(7):747–756.  https://doi.org/10.1094/MPMI-01-14-0018-R CrossRefGoogle Scholar
  13. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543.  https://doi.org/10.1111/j.1365-2311.2011.01318.x CrossRefGoogle Scholar
  14. Figueroa CC, Simon JC, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver CA, Niemeyer HM (2005) Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae. Heredity 95:24–33.  https://doi.org/10.1038/sj.hdy.6800662 CrossRefGoogle Scholar
  15. Gerding M, Zúñiga E, Quiroz CE, Norambuena H, Vargas R (1989) Abundancia relativa de los parasitoides de Sitobion avenae (F) y Metopolophium dirhodum (WLK) (Homoptera: Aphididae) en diferentes áreas geográficas de Chile. Agric Tech 42:105–114Google Scholar
  16. Grez AA (1997) Effect of habitat subdivision on the population dynamics of herbivorous and predatory insects in central Chile. Rev Chil Hist Nat 70:481–490Google Scholar
  17. Guay JF, Boudreault S, Michaud D, Cloutier C (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol 55:919–926.  https://doi.org/10.1016/j.jinsphys.2009.06.006 CrossRefGoogle Scholar
  18. Honěk A, Hodek I (1996) Distribution in habitats. Ecology of Coccinellidae. Springer, Netherlands.Google Scholar
  19. Krams I, Kivleniece I, Kuusik A, Krama T, Mänd R, Rantala MJ, Znotiņa S, Freeberg TM, Mänd M (2013) Predation promotes survival of beetles with lower resting metabolic rates. Entomol Exp Appl 148:94–103.  https://doi.org/10.1111/eea.12079 CrossRefGoogle Scholar
  20. Kunert G, Otto S, Röse US, Gershenzon J, Weisser WW (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol Lett 8:596–603.  https://doi.org/10.1111/j.1461-0248.2005.00754.x CrossRefGoogle Scholar
  21. Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc Lond B Biol Sci 270:S209–S212.  https://doi.org/10.1098/rsbl.2003.0064 CrossRefGoogle Scholar
  22. Lighton JR (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press.Google Scholar
  23. Loxdale HD, Edwards O, Tagu D, Vorburger C (2017) Population genetic issues: new insights using conventional molecular markers and genomics tools. In: van Emden HF, Harrington R (eds) Aphids as crop pests, 2nd edn. CABI, Wallingford, pp 50—80CrossRefGoogle Scholar
  24. Łukasik P, Dawid MA, Ferrari J, Godfray HCJ (2013) The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 173:985–996.  https://doi.org/10.1007/s00442-013-2660-5 CrossRefGoogle Scholar
  25. Luo C, Luo K, Meng L, Wan B, Zhao H, Hu Z (2017) Ecological impact of a secondary bacterial symbiont on the clones of Sitobion avenae (Fabricius) (Hemiptera: Aphididae). Sci Rep 7:40754.  https://doi.org/10.1038/srep40754 CrossRefGoogle Scholar
  26. McLean AHC, Van Asch M, Ferrari J, Godfray HCJ (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc Lond B Biol Sci 278:760–766.  https://doi.org/10.1098/rspb.2010.1654 CrossRefGoogle Scholar
  27. Morán NA, Mira A (2001) The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Gen Biol 2:1–54.  https://doi.org/10.1186/gb-2001-2-12-research0054 CrossRefGoogle Scholar
  28. Obrycki JJ, Harwood JD, Kring TJ, O’Neil RJ (2009) Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biolog Control 51:244–254.  https://doi.org/10.1016/j.biocontrol.2009.05.009 CrossRefGoogle Scholar
  29. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confers resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807.  https://doi.org/10.1073/pnas.0335320100 CrossRefGoogle Scholar
  30. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800.  https://doi.org/10.1073/pnas.0506131102 CrossRefGoogle Scholar
  31. Oliver KM, Noge K, Huang EM, Campos JM, Becerra JX, Hunter MS (2012) Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol 10:11.  https://doi.org/10.1186/1741-7007-10-11 CrossRefGoogle Scholar
  32. Peccoud J, Bonhomme J, Mahéo F, Huerta M, Cosson O, Simon JC (2014) Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes. Insect Sci 21:291–300.  https://doi.org/10.1111/1744-7917.12083 CrossRefGoogle Scholar
  33. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  34. Raymond L, Ortiz-Martínez SA, Lavandero B (2015) Temporal variability of aphid biological control in contrasting landscape contexts. Biolog Control 90:148–156.  https://doi.org/10.1016/j.biocontrol.2015.06.011 CrossRefGoogle Scholar
  35. Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781.  https://doi.org/10.1126/science.1120180 CrossRefGoogle Scholar
  36. Sepúlveda DA, Zepeda-Paulo F, Ramírez CC, Lavandero B, Figueroa CC (2017) Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect Sci 24:511–521.  https://doi.org/10.1111/1744-7917.12313 CrossRefGoogle Scholar
  37. Simon JC, Carré S, Boutin M, Prunier-Leterme N, Sabater-Mun B, Latorre A, Bournoville R (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc Lond B Biol Sci 270:1703–1712.  https://doi.org/10.1098/rspb.2003.2430 CrossRefGoogle Scholar
  38. Simon JC, Boutin S, Tsuchida T, Koga R, Le Gallic JF, Frantz A, Outreman Y, Fukatsu T (2011) Facultative symbiont infections affect aphid reproduction. PLoS ONE 6:e21831.  https://doi.org/10.1371/journal.pone.0021831 CrossRefGoogle Scholar
  39. Starý P, Rodríguez F, Gerding M, Norambuena H, Remaudière G (1994) Distribution, frequency, host range and parasitism of two new cereal aphid pests, Sitobion fragariae (Walker) and Metopolophium festucae cerealium Stroyan (Homoptera, Aphididae), in Chile. Agric Tech 54:54–59Google Scholar
  40. Sunnucks P, England PR, Taylor AC, Hales DF (1996) Microsatellite and chromosome evolution of parthenogenetic Sitobion aphids in Australia. Genetics 144:747–756Google Scholar
  41. Thomas S, Dogimont C, Boissot N (2011) Association between Aphis gossypii genotype and phenotype on melon accessions. Arthropod Plant Interact 6:93–101.  https://doi.org/10.1007/s11829-011-9155-2 CrossRefGoogle Scholar
  42. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 30:1989.  https://doi.org/10.1126/science.1094611 CrossRefGoogle Scholar
  43. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135.  https://doi.org/10.1046/j.1365-294X.2002.01606.x CrossRefGoogle Scholar
  44. van den Bosch TJM, Welte CU (2016) Detoxifying symbionts in agriculturally important pest insects. Microb Biotechnol 10:531–540.  https://doi.org/10.1111/1751-7915.12483 CrossRefGoogle Scholar
  45. Vorburger C, Gouskov A (2011) Only helpful when required: a longevity cost of harbouring defensive symbionts. J Evol Biol 24:1611–1617.  https://doi.org/10.1111/j.1420-9101.2011.02292.x CrossRefGoogle Scholar
  46. Wang D, Shi X, Dai P, Liu D, Dai X, Shang Z, Meng X (2016) Comparison of fitness traits and their plasticity on multiple plants for Sitobion avenae infected and cured of a secondary endosymbiont. Sci Rep 6:23177.  https://doi.org/10.1038/srep23177 CrossRefGoogle Scholar
  47. Weisser WW, Braendle C, Minoretti N (1999) Predator-induced morphological shift in the pea aphid. Proc R Soc London B Biol Sci 266(1424):1175–1181.  https://doi.org/10.1098/rspb.1999.0760 CrossRefGoogle Scholar
  48. Wernegreen JJ (2012) Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microbiol 15:255–262.  https://doi.org/10.1016/j.mib.2012.02.001 CrossRefGoogle Scholar
  49. Ye Z, Vollhardt IMG, Parth N, Rubbmark O, Traugott M (2018) Facultative bacterial endosymbionts shape parasitoid food webs in natural host populations: A correlative analysis. J Anim Ecol 87:1440–1451.  https://doi.org/10.1111/1365-2656.12875 CrossRefGoogle Scholar
  50. Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC, Lavandero B (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6:983–999.  https://doi.org/10.1111/eva.12081 CrossRefGoogle Scholar
  51. Zepeda-Paulo F, Villegas C, Lavandero B (2017) Host genotype–endosymbiont associations and their relationship with aphid parasitism at the field level. Ecol Entomol 42:86–95.  https://doi.org/10.1111/een.12361 CrossRefGoogle Scholar
  52. Zuñiga S, Enrique VDB, Robert D, John J, Gruber F (1986) Control biológico de los áfidos (Homoptera: Aphididae) de los cereales en Chile. 2. Obtención, introducción y cuarentena de depredadores y parasitoides. Agric Téch 46:479–487Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ecología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro de Ecología Molecular y Funcional, Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  3. 3.Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
  4. 4.Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
  5. 5.Millennium Institute for Integrative Biology (iBio)SantiagoChile
  6. 6.Laboratorio de Ecología Química, Instituto de Investigaciones AgropecuariasCRI-QuilamapuChillánChile
  7. 7.Instituto de EntomologíaUniversidad Metropolitana de Ciencias de la EducaciónSantiagoChile

Personalised recommendations