Advertisement

Journal of Pest Science

, Volume 92, Issue 1, pp 343–351 | Cite as

Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality

  • Letian Xu
  • Jundan Deng
  • Fangyuan Zhou
  • Chihang Cheng
  • Longwa ZhangEmail author
  • Jiang ZhangEmail author
  • Min LuEmail author
Original Paper

Abstract

Dendroctonus valens, introduced to China from North America, has caused catastrophic mortality of healthy pines and has the potential to disperse into new geographic ranges. The entomopathogen Beauveria bassiana is an environmentally friendly alternative to chemical pesticides, and it is highly lethal to D. valens. Recent studies reported that gut microbiota of insects can suppress or promote infections by B. bassiana. Although D. valens harbors an abundant gut microbiota, whether and how gut microbiota interplay with fungal entomopathogens has not been examined. Nonaxenic D. valens larvae inoculated with B. bassiana conidia died significantly faster than axenic larvae. Significant differences were found between the structures of gut bacterial communities in B. bassiana conidial suspension-inoculated and Tween 80 treated larvae, and the abundance of Erwinia sp. in the former group was significantly higher than the latter one. Reintroduction of Erwinia sp. into axenic D. valens larvae accelerated larval mortality. These observations indicate that the gut bacterial community of an invasive bark beetle is altered by entomopathogenic B. bassiana, which further accelerates beetle mortality.

Keywords

Gut microbiota Dendroctonus valens Beauveria bassiana Pathogenicity Interactions 

Notes

Acknowledgements

This project was funded by the National Key Research and Development Program (2017YFD0600101), National Natural Science Foundation of China (31700569, 31000304, 31170616), the China Postdoctoral Science Foundation (2017M622389), and Natural Science Foundation of Anhui province, China (1508085SMC216).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10340_2018_999_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3238 kb)
10340_2018_999_MOESM2_ESM.xlsx (27 kb)
Supplementary material 2 (XLSX 28 kb)

References

  1. Batta YA (2007) Biocontrol of almond bark beetle (Scolytus amygdali Geurin-Meneville, Coleoptera: Scolytidae) using Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes). J Appl Microbiol 103:1406–1414CrossRefGoogle Scholar
  2. Baumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93CrossRefGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  4. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci 366:1987–1998CrossRefGoogle Scholar
  5. Cheng C, Zhou F, Lu M, Sun J (2015) Inducible pine rosin defense mediates interactions between an invasive insect-fungal complex and newly acquired sympatric fungal associates. Integr Zool 10:453–464CrossRefGoogle Scholar
  6. Chu CC, Spencer JL, Curzi MJ, Zavala JA, Seufferheld MJ (2013) Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc Natl Acad Sci USA 110:11917–11922CrossRefGoogle Scholar
  7. Cognato AI, Sun J-H, Anducho-Reyes MA, Owen DR (2005) Genetic variation and origin of red turpentine beetle (Dendroctonus valens LeConte) introduced to the People’s Republic of China. Agric For Entomol 7:87–94CrossRefGoogle Scholar
  8. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92CrossRefGoogle Scholar
  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  10. Engel P, Moran NA (2013) The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev 37:699–735CrossRefGoogle Scholar
  11. Erbilgin N, Mori SR, Sun JH, Stein JD, Owen DR, Merrill LD et al (2007) Response to host volatiles by native and introduced populations of Dendroctonus valens (Coleoptera: Curculionidae, Scolytinae) in North America and China. J Chem Ecol 33:131–146CrossRefGoogle Scholar
  12. García-Fraile P (2018) Roles of bacteria in the bark beetle holobiont—how do they shape this forest pest? Ann Appl Biol 172:111–125CrossRefGoogle Scholar
  13. Grenier AM, Duport G, Pages S, Condemine G, Rahbe Y (2006) The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Appl Environ Microbiol 72:1956–1965CrossRefGoogle Scholar
  14. Jari OF, Guillaume B, Michael F, Roeland K, Pierre L, Dan M et al (2016) Vegan: community ecology package. http://cran.r-project.org http://github.com/vegandevs/vegan291
  15. Hammer Ø, Harper D, Ryan P (2001) PAST: paleontological Statistics Software Package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  16. Harada H, Ishikawa H (1997) Experimental pathogenicity of Erwinia aphidicola to pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 43:363–367CrossRefGoogle Scholar
  17. Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens EC et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–1329CrossRefGoogle Scholar
  18. Kreutz J, Zimmermann G, Vaupel O (2004) Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Sci Technol 14:837–848CrossRefGoogle Scholar
  19. López MF, Cano-Ramírez C, Cesar-Ayala AK, Ruiz EA, Zúñiga G (2013) Diversity and expression of P450 genes from Dendroctonus valens LeConte (Curculionidae: Scolytinae) in response to different kairomones. Insect Biochem Mol 43:417–432CrossRefGoogle Scholar
  20. Lu M, Wingfield MJ, Gillette N, Sun J-H (2011) Do novel genotypes drive the success of an invasive bark beetle-fungus complex? Implications for potential reinvasion. Ecology 92:2013–2019CrossRefGoogle Scholar
  21. Lu M, Hulcr J, Sun J (2016) The role of symbiotic microbes in insect invasions. Annu Rev Ecol Evol S 47:487–505CrossRefGoogle Scholar
  22. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  23. Mason C, Rubert-Nason K, Lindroth R, Raffa K (2015) Aspen defense chemicals influence midgut bacterial community composition of gypsy moth. J Chem Ecol 41:75–84CrossRefGoogle Scholar
  24. Morales-Jimenez J, Zuniga G, Villa-Tanaca L, Hernandez-Rodriguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891CrossRefGoogle Scholar
  25. Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64:268–278CrossRefGoogle Scholar
  26. Qiu J (2013) China battles army of invaders. Nature 503:450–451CrossRefGoogle Scholar
  27. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CrossRefGoogle Scholar
  28. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160CrossRefGoogle Scholar
  29. Ruokolainen L, Ikonen S, Makkonen H, Hanski I (2016) Larval growth rate is associated with the composition of the gut microbiota in the Glanville fritillary butterfly. Oecologia 181:895–903CrossRefGoogle Scholar
  30. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101CrossRefGoogle Scholar
  31. Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJ, de Boer BD et al (2016) The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65:575–583CrossRefGoogle Scholar
  32. Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423CrossRefGoogle Scholar
  33. Smith RH (1971) Red turpentine beetle. US Department of Agriculture, Forest Service, WashingtonGoogle Scholar
  34. Steinwender B, Krenn H, Wegensteiner R (2010) Different effects of the insect pathogenic fungus Beauveria tassiana (Deuteromycota) on the bark beetle Ips sexdentatus (Coleoptera: Curculionidae) and on its predator Thanasimus formicarius (Coleoptera: Cleridae). J Plant Dis Protect 117:33–38CrossRefGoogle Scholar
  35. Sun J, Lu M, Gillette NE, Wingfield MJ (2013) Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol 58:293–311CrossRefGoogle Scholar
  36. Wang C, Wang S (2017) Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol 62:73–90CrossRefGoogle Scholar
  37. Wang PX, He H, Li JK, Xing JH, Li ML (2007a) The investigation of natural enemies of Dendroctonus valens in Shaanxi. Chin Bull Entomol 44:249–251Google Scholar
  38. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007b) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73(16):5261–5267CrossRefGoogle Scholar
  39. Wei G, Lai Y, Wang G, Chen H, Li F, Wang S (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. P Natl Acad Sci USA 114:5994–5999CrossRefGoogle Scholar
  40. Xu L, Lou Q, Cheng C, Lu M, Sun J (2015) Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb Ecol 70:1012–1023CrossRefGoogle Scholar
  41. Xu L, Lu M, Sun J (2016a) Invasive bark beetle-associated microbes degrade a host defensive monoterpene. Insect Sci 23:183–190CrossRefGoogle Scholar
  42. Xu L, Lu M, Xu D, Chen L, Sun J (2016b) Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production. J Insect Physiol 95:110–117CrossRefGoogle Scholar
  43. Xu L, Shi Z, Wang B, Lu M, Sun J (2016c) Pine defensive monoterpene α-pinene influences the feeding behavior of Dendroctonus valens and its gut bacterial community structure. Int J Mol Sci 17:1734CrossRefGoogle Scholar
  44. Yan Z, Sun J, Don O, Zhang Z (2005) The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers Conserv 14:1735–1760CrossRefGoogle Scholar
  45. Yao J (2011) Biodiversity of exotic insect Dendroctonus valens and Beauveria bassiana on its microhabitat. Dissertation, Anhui Agricultural UniversityGoogle Scholar
  46. Zhang LW, Liu YJ, Yao J, Wang B, Huang B, Li ZZ et al (2011) Evaluation of Beauveria bassiana (Hyphomycetes) isolates as potential agents for control of Dendroctonus valens. Insect Sci 18:209–216CrossRefGoogle Scholar
  47. Zhang F, Huang YH, Liu SZ, Zhang L, Li BT, Zhao XX et al (2013) Pseudomonas reactans, a bacterial strain isolated from the intestinal flora of Blattella germanica with anti-Beauveria bassiana Activity. Environ Entomol 42:453–459CrossRefGoogle Scholar
  48. Zhang F, Sun XX, Zhang XC, Zhang S, Lu J, Xia YM et al (2017) T The interactions between gut microbiota and entomopathogenic fungi: a potential approach for biological control of Blattella germanica (L.). Pest Manag Sci 74(2):438–447CrossRefGoogle Scholar
  49. Zhou F, Lou Q, Wang B, Xu L, Cheng C, Lu M et al (2016) Altered carbohydrates allocation by associated bacteria-fungi interactions in a bark beetle-microbe symbiosis. Sci Rep 6:20135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anhui Provincial Key Laboratory of Microbial Control, School of Forestry and Landscape ArchitectureAnhui Agricultural UniversityHefeiChina
  2. 2.Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life ScienceHubei UniversityWuhanChina
  3. 3.State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
  4. 4.Shandong Provincial Key Laboratory for Applied Microbiology, Ecology InstituteQilu University of Technology (Shandong Academy of Sciences)Ji’nanChina
  5. 5.College of Life SciencesHuzhou UniverisityHuzhouChina

Personalised recommendations