Journal of Pest Science

, Volume 92, Issue 1, pp 237–252 | Cite as

Quantitative analysis of contents and volatile emissions from α-copaene and quercivorol lures, and longevity for attraction of Euwallacea nr. fornicatus in Florida

  • David Owens
  • Paul E. KendraEmail author
  • Nurhayat Tabanca
  • Teresa I. Narvaez
  • Wayne S. Montgomery
  • Elena Q. Schnell
  • Daniel Carrillo
Original Paper


Ambrosia beetles in the cryptic species complex Euwallacea nr. fornicatus vector a fungal pathogen responsible for Fusarium dieback, a disease that impacts avocado (Persea americana), woody ornamentals, and numerous native trees in the USA (California, Florida), Israel, and other countries. Currently, these pests are detected with quercivorol lures (containing p-menth-2-en-1-ol isomers), but recent research identified an essential oil enriched in (-)-α-copaene as a new attractant. In this study, lure longevity and efficacy were assessed in three 12-week field tests conducted in Florida by deploying traps baited with quercivorol, α-copaene, and a combination of the two. A fourth test compared different formulations of quercivorol. Concurrent with field experiments, gas chromatographic analyses were conducted to quantify initial lure contents as well as volatile emissions from lures field-aged for 12 weeks. In all tests, the lure combination captured significantly more E. nr. fornicatus than the individual lures; and in two trials, synergistic attraction was observed. Field life of the combination lure was 12 weeks; longevity of single lures varied from 9 to 12 weeks. Twelve terpenoids were detected from the α-copaene-enriched oil, suggesting there may be additional attractants. Analysis of the quercivorol lure showed it contained 88% trans- and 9% cis-p-menth-2-en-1-ol. Results indicate that the combination of quercivorol and α-copaene provides a long-lasting, effective lure for early detection of E. nr. fornicatus in Florida. Further research is needed to determine which isomer of p-menth-2-en-1-ol is attractive to Florida E. nr. fornicatus, and if other members of the species complex are attracted to (-)-α-copaene.


Ambrosia beetle Diastereomer Enantiomer Fusarium dieback Kairomone p-menth-2-en-1-ol 



The authors are grateful to Carlos de la Torre, Arnoldo Paniagua, and John Barkett for providing generous access to their groves, to Louis Dessaint (Brooks Tropicals and Florida Avocado Administrative Committee) for assistance in coordinating field operations, and to Xing-Cong Li (School of Pharmacy, University of Mississippi), Richard Mankin (USDA-ARS, Gainesville, FL), Jerome Niogret (Niogret Ecology Consulting, Miami, FL), and the journal editor/referees for critical reviews of an earlier version of this manuscript. Use of a proprietary product does not constitute an endorsement by USDA-ARS.


Research was supported by USDA-ARS Appropriated Funds (Mitigation of the Invasive Pest Threat from the American Tropics and Subtropics) and an appointment to the ARS Research Participation Agreement between the US Department of Energy (DOE) and the USDA. ORISE is managed by ORAU under DOE contract number DE-SC0014664.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article contains field studies that targeted insect pests and did not involve any protected or endangered species.


  1. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corp, Carol StreamGoogle Scholar
  2. Ali A, Tabanca N, Demirci B, Baser KHC, Ellis J, Gray S, Lackey BR, Murphy C, Khan IA, Wedge DE (2013) Composition, mosquito larvicidal, biting deterrent and antifungal activity of essential oils of different plant parts of Cupressus arizonica var. glabra (‘Carolina Sapphire’). Nat Prod Commun 8:257–260Google Scholar
  3. Al-Rehaily AJ, Alqasoumi SI, Yusufoglu HS, Al-Yahya MA, Demirci B, Tabanca N, Wedge DE, Demirci F, Bernier UR, Becnel JJ, Temel HE, Baser KHC (2014) Chemical composition and biological activity of Haplophyllum tuberculatum Juss. essential oil. J Essent Oil Bear Plant 3:452–549CrossRefGoogle Scholar
  4. Atkinson TH, Carrillo D, Duncan RE, Peña JE (2013) Occurrence of Xyleborus bispinatus (Coleoptera: Curculionidae: Scolytinae) Eichhoff in southern Florida. Zootaxa 3669:096–100CrossRefGoogle Scholar
  5. Bateman MA, Morton TC (1981) The importance of ammonia in proteinaceous attractants for fruit flies (family: Tephritidae). Aust J Agric Res 32:883–903CrossRefGoogle Scholar
  6. Blair M, Tuck KL (2009) A new diastereoselective entry to the (1S, 4R)- and (1S, 4S)-isomers of 4-isopropyl-1-methyl-2-cyclohexen-1-ol, aggregation pheromones of the ambrosia beetle Platypus quercivorus. Tetrahedron Asymmetry 20:2149–2153CrossRefGoogle Scholar
  7. Blythe EK, Tabanca N, Demirci B, Tsikolia M, Bloomquist JR, Bernier UR (2016) Lantana montevidensis essential oil: chemical composition and mosquito repellent activity against Aedes aegypti. Nat Prod Commun 11:1713–1716Google Scholar
  8. Boland JM (2016) The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California. PeerJ 4:e2141CrossRefGoogle Scholar
  9. Brar GS, Capinera JL, McLean S, Kendra PE, Ploetz RC, Peña JE (2012) Effect of trap size, trap height and age of lure on sampling Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and its flight periodicity and seasonality. Florida Entomol 95:1003–1011CrossRefGoogle Scholar
  10. Byers JA, Maoz Y, Levi-Zada A (2017) Attraction of the Euwallacea sp. near fornicatus (Coleoptera: Curculionidae) to quercivorol and to infestation in avocado. J Econ Entomol 110:1512–1517CrossRefGoogle Scholar
  11. Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed Engl 5:385–415CrossRefGoogle Scholar
  12. Campbell P, Geering A (2011) Biosecurity capacity building for the Australian avocado industry—laurel wilt. In: Proceedings VII world avocado congress 2011 (Actas VII Congreso Mundial del Aguacate 2011). Cairns, Australia. 5–9 September 2011.
  13. Carrillo D, Duncan RE, Peña JE (2012) Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) that breed in avocado wood in Florida. Florida Entomol 95:573–579CrossRefGoogle Scholar
  14. Carrillo D, Narvaez T, Cossé AA, Stouthamer R, Cooperband M (2015) Attraction of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae) to lures containing quercivorol. Florida Entomol 98:780–782CrossRefGoogle Scholar
  15. Carrillo D, Cruz LF, Kendra PE, Narvaez TI, Montgomery WS, Monterroso A, De Grave C, Cooperband MF (2016) Distribution, pest status, and fungal associates of Euwallacea nr. fornicatus in Florida avocado groves. Insects 7:55CrossRefGoogle Scholar
  16. Carroll JF, Tabanca N, Kramer M, Elejalde NM, Wedge DE, Bernier UR, Coy M, Becnel JJ, Demirci B, Baser KHC, Zhan J, Zhan S (2011) Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J Vector Ecol 36:258–268CrossRefGoogle Scholar
  17. Chemical Abstracts Service. Accessed on 26 Jan 2018
  18. Cooperband MF, Stouthamer R, Carrillo D, Eskalen A, Thibault T, Cossé AA, Castrillo LA, Vandenberg JD, Rugman-Jones PF (2016) Biology of two members of the Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae), recently invasive in the USA, reared on an ambrosia beetle artificial diet. Agric For Entomol 18:223–237CrossRefGoogle Scholar
  19. Cooperband MF, Cossé AA, Jones TH, Carrillo D, Cleary K, Canlas I, Stouthamer R (2017) Pheromones of three ambrosia beetles in the Euwallacea fornicatus species complex: ratios and preferences. PeerJ 5:e3957CrossRefGoogle Scholar
  20. Danthanarayana W (1968) The distribution and host-range of the shot-hole borer (Xyleborus fornicatus Eichh.) of tea. Tea Q 39:61–69Google Scholar
  21. Dodge C, Coolidge J, Cooperband M, Cossé A, Carrillo D, Stouthamer R (2017) Quercivorol as a lure for the polyphagous and Kuroshio shot hole borers, Euwallacea spp. nr. fornicatus (Coleoptera: Scolytinae), vectors of Fusarium dieback. PeerJ 5:e3656CrossRefGoogle Scholar
  22. Eskalen A, Stouthamer R, Lynch SC, Rugman-Jones PF, Twizeyimana M, Gonzalez A, Thibault T (2013) Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Dis 97:938–951CrossRefGoogle Scholar
  23. Eskalen A (2017) Known suitable reproductive hosts of shot hole borer-Fusarium dieback in California. Accessed 28 Jan 2018
  24. FFNSC 3 (2015) Flavors and fragrances of natural and synthetic compounds 3, mass spectral database. Wiley, HobokenGoogle Scholar
  25. Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Mayfield AE III, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern USA. Plant Dis 92:215–224CrossRefGoogle Scholar
  26. Freeman S, Protasov A, Sharon M, Mohotti K, Eliyahu M, Okon-Levy N, Maymon M, Mendel Z (2012) Obligate feed requirement of Fusarium sp. Nov., an avocado wilting agent, by the ambrosia beetle Euwallacea aff. fornicata. Symbiosis 58:245–251CrossRefGoogle Scholar
  27. García-Avila CDJ, Trujillo-Arriaga FJ, López-Buenfil JA, González-Gómez R, Carrillo D, Cruz LF, Ruiz-Galván I, Quezada-Salinas A, Acevedo-Reyes N (2016) First report of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Mexico. Florida Entomol 99:555–556CrossRefGoogle Scholar
  28. Gillette NE, Mehmel CJ, Mori SR, Webster JN, Wood DL, Erbilgin N, Owen DR (2012) The push-pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines. Environ Entomol 41:1575–1586CrossRefGoogle Scholar
  29. Hanula JL, Mayfield AE III, Fraedrich SW, Rabaglia RJ (2008) Biology and host associations of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southeastern United States. J Econ Entomol 101:1276–1286CrossRefGoogle Scholar
  30. Hardt IH, Rieck A, Fricke C, Koening WA (1995) Enantiomeric composition of sesquiterpene hydrocarbons of the essential oil of Cedrela odorata L. Flavour Fragr J 10:165–171CrossRefGoogle Scholar
  31. Hazarika LK, Bhuyan M, Hazarika BN (2009) Insect pests of tea and their management. Ann Rev Entomol 54:267–284CrossRefGoogle Scholar
  32. Hughes MA, Martini X, Kuhns E, Colee J, Mafra-Neto A, Stelinski LL, Smith JA (2017) Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. J Appl Entomol 141:653–664CrossRefGoogle Scholar
  33. Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naïve forest ecosystems. Proc R Soc B Biol Sci 278:2866–2873CrossRefGoogle Scholar
  34. Inch SA, Ploetz RC, Blanchette R, Held B (2012) Histological and anatomical responses in avocado, Persea americana, induced by the vascular wilt pathogen, Raffaelea lauricola. Botany 90:627–635CrossRefGoogle Scholar
  35. Jones ME, Kabashima J, Eskalen A, Dimson M, Mayorquin JS, Carrillo JD, Hanlon CC, Paine TD (2017) Evaluations of insecticides and fungicides for reducing attack rates of a new invasive ambrosia beetle (Euwallacea sp., Coleoptera: Curculionidae: Scolytinae) in infested landscape trees in California. J Econ Entomol 110:1611–1618CrossRefGoogle Scholar
  36. Karunaratne WS, Kumar V, Pettersson J, Kumar NS (2008) Response of the shot-hole borer of tea, Xyleborus fornicatus (Coleoptera: Scolytidae) to conspecifics and plant semiochemicals. Acta Agric Scand Sect A—Anim Sci 58:345–351Google Scholar
  37. Kashiwagi T, Nakashima T, Tebayashi S-I, Kim C-S (2006) Determination of the absolute configuration of quercivorol, (1S, 4R)-p-menth-2-en-1-ol, an aggregation pheromone of the ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae). Biosci Biotechnol Biochem 70:2544–2546CrossRefGoogle Scholar
  38. Kasson MT, O’Donnell K, Rooney AP, Sink S, Ploetz RC, Ploetz JN, Konkol JL, Carrillo D, Freeman S, Mendel Z, Smith JA, Black AW, Hulcr J, Bateman C, Stefkova K, Campbell PR, Geering ADW, Dann EK, Eskalen A, Mohotti K, Short DPG, Aoki T, Fenstermacher KA, Davis DD, Geiser DM (2013) An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genet Biol 56:147–157CrossRefGoogle Scholar
  39. Kendra PE, Montgomery WS, Mateo DM, Puche H, Epsky ND, Heath RR (2005) Effect of age on EAG response and attraction of female Anastrepha suspensa (Diptera: Tephrididae) to ammonia and carbon dioxide. Environ Entomol 34:584–590CrossRefGoogle Scholar
  40. Kendra PE, Montgomery WS, Niogret J, Peña JE, Capinera JL, Brar G, Epsky ND, Heath RR (2011) Attraction of the redbay ambrosia beetle, Xyleborus glabratus, to avocado, lychee, and essential oil lures. J Chem Ecol 37:932–942CrossRefGoogle Scholar
  41. Kendra PE, Niogret J, Montgomery WS, Sanchez JS, Deyrup MA, Pruett GE, Ploetz RC, Epsky ND, Heath RR (2012) Temporal analysis of sesquiterpene emissions from manuka and phoebe oil lures and efficacy for attraction of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). J Econ Entomol 105:659–669CrossRefGoogle Scholar
  42. Kendra PE, Montgomery WS, Niogret J, Epsky ND (2013) An uncertain future for American Lauraceae: a lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). Special issue: the future of forests. Am J Plant Sci 4:727–738CrossRefGoogle Scholar
  43. Kendra PE, Montgomery WS, Niogret J, Pruett GE, Mayfield AE III, MacKenzie M, Deyrup MA, Bauchan GR, Ploetz RC, Epsky ND (2014a) North American Lauraceae: Terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 9(7):e102086CrossRefGoogle Scholar
  44. Kendra PE, Montgomery WS, Niogret J, Schnell EQ, Deyrup MA, Epsky ND (2014b) Evaluation of seven essential oils identifies cubeb oil as most effective attractant for detection of Xyleborus glabratus. J Pest Sci 87:681–689CrossRefGoogle Scholar
  45. Kendra PE, Narvaez TI, Montgomery WS, Carrillo D (2015a) Ambrosia beetle communities in forest and agricultural ecosystems with laurel wilt disease (D3524). In: 53rd Annual Meeting of the Entomological Society of America, Minneapolis, MN, USA 15–18 November 2015.
  46. Kendra PE, Niogret J, Montgomery WS, Deyrup MA, Epsky ND (2015b) Cubeb oil lures: Terpenoid emissions, trapping efficacy, and longevity for attraction of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J Econ Entomol 108:350–361CrossRefGoogle Scholar
  47. Kendra PE, Montgomery WS, Deyrup MA, Wakarchuk D (2016a) Improved lure for redbay ambrosia beetle developed by enrichment of α-copaene content. J Pest Sci 89:427–438CrossRefGoogle Scholar
  48. Kendra PE, Montgomery WS, Schnell EQ, Deyrup MA, Epsky ND (2016b) Efficacy of α-copaene, cubeb, and eucalyptol lures for detection of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). J Econ Entomol 109:2428–2435CrossRefGoogle Scholar
  49. Kendra PE, Owens DR, Montgomery WS, Narvaez TI, Bauchan GR, Schnell EQ, Tabanca N, Carrillo D (2017) α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 12(6):e0179416CrossRefGoogle Scholar
  50. King CBR (1940) Notes on the shot-hole borer of tea Xyleborus fornicatus Eichhoff fornicatior Eggers. Tea Q 13:111–116Google Scholar
  51. Kuhns EH, Tribuiani Y, Martini X, Meyer WL, Peña J, Hulcr J, Stelinski LL (2014) Volatiles from the symbiotic fungus Raffaelea lauricola are synergistic with manuka lures for increased capture of the redbay ambrosia beetle Xyleborus glabratus. Agric Forest Entomol 16:87–94CrossRefGoogle Scholar
  52. Mendel Z, Protasov A, Sharon M, Zveibil A, Ben Yehuda S, O’Donnell K, Rabaglia R, Wysoki M, Freeman S (2012) An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica 40:235–238CrossRefGoogle Scholar
  53. Miller DR, Rabaglia RJ (2009) Ethanol and (−)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. J Chem Ecol 35:435–448CrossRefGoogle Scholar
  54. Mori K (2006) Synthesis of (1S, 4R)-4-isopropyl-1-methyl-2-cyclohexen-1-ol, the aggregation pheromone of the ambrosia beetle Platypus quercivorus, its racemate, (1R, 4R)- and (1S,4S)-isomers. Tetrahedron Asymmetry 17:2133–2142CrossRefGoogle Scholar
  55. Niogret J, Kendra PE, Epsky ND, Heath RR (2011) Comparative analysis of terpenoid emissions from Florida host trees of the redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomol 94:1010–1017CrossRefGoogle Scholar
  56. Niogret J, Epsky ND, Schnell RJ, Boza EJ, Kendra PE, Heath RR (2013) Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae). PLoS ONE 8(9):e73601CrossRefGoogle Scholar
  57. NIST (2017) The NIST 17 Mass Spectrometer database, Scientific Instrument Services Inc., New Jersey. Accessed 23 Oct 2017
  58. O’Donnell K, Sink S, Libeskind-Hadas R, Hulcr J, Kasson MT, Ploetz RC, Konkol JL, Ploetz JN, Carrillo D, Campbell A, Duncan RE, Liyanage PNH, Eskalen A, Na F, Geiser DM, Bateman C, Freeman S, Mendel Z, Sharon M, Aoki T, Cossé AA, Rooney AP (2015) Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism. Fungal Genet Biol 82:277–290CrossRefGoogle Scholar
  59. Owens D, Montgomery WS, Narvaez TI, Deyrup MA, Kendra PE (2017) Evaluation of lure combinations containing essential oils and volatile spiroketals for detection of host-seeking Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). J Econ Entomol 110:1596–1602CrossRefGoogle Scholar
  60. Owens D, Cruz LF, Montgomery WS, Narvaez TI, Schnell EQ, Tabanca N, Duncan RE, Carrillo D, Kendra PE (2018) Host range expansion and increasing damage potential of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Florida. Florida Entomol 101: in press. Accepted 9 Jan 2018Google Scholar
  61. Ploetz RC, Hughes MA, Kendra PE, Fraedrich SW, Carrillo D, Stelinski LL, Hulcr J, Mayfield AE III, Dreaden TL, Crane JH, Evans EA, Schaffer BA, Rollins J (2017a) Recovery plan for laurel wilt of avocado, caused by Raffaelea lauricola. Plant Health Prog 18:51–77CrossRefGoogle Scholar
  62. Ploetz RC, Kendra PE, Choudhury RA, Rollins J, Campbell A, Garrett K, Hughes M, Dreaden T (2017b) Laurel wilt in natural and agricultural ecosystems: Understanding the drivers and scales of complex pathosystems. Special issue: Forest pathology and plant health. Forests 8:48Google Scholar
  63. Rabaglia RJ, Dole SA, Cognato AI (2006) Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, with an illustrated key. Ann Entomol Soc Amer 99:1034–1056CrossRefGoogle Scholar
  64. Rabaglia R, Duerr D, Acciavatti R, Ragenovich I (2008) Early detection and rapid response for non-native bark and ambrosia beetles. US Department of Agriculture, Forest Service, Forest Health Protection, Washington, DC. Accessed 20 Oct 2017
  65. (SIAP) Servicio de información agroalimentaria y pesquera (2015) Cierre de la producción agrícola por cultivo. Accessed 20 Oct 2017
  66. Stouthamer R, Rugman-Jones P, Thu PQ, Eskalen A, Thibault T, Hulcr J, Wang L, Jordal BH, Chen C, Cooperband M, Lin C, Kamata N, Lu S, Masuya H, Mendel Z, Rabaglia R, Sanguansub S, Shih H, Sittichaya W, Zong S (2017) Tracing the origin of a cryptic invader: phylogeography of the Euwallacea fornicatus (Coleoptera: Curculionidae: Scolytinae) species complex. Agric For Entomol 19:366–375CrossRefGoogle Scholar
  67. Systat Software (2013) SigmaPlot® 13. User’s guide. Systat Software, Inc., San Jose, CA, USAGoogle Scholar
  68. Tokoro M, Kobayashi M, Saito S, Kinuura H, Nakashima T, Shoda-Kagaya E, Kashiwagi T, Tebayashi S-I, Kim C-S, Mori K (2007) Novel aggregation pheromone, (1S, 4R)-p-menth-2-en-1-ol, of the ambrosia beetle, Platypus quercivorus (Coleoptera: Platypodidae). Bull For For Prod Res Inst 6:49–57Google Scholar
  69. (USDA-FS) United States Department of Agriculture, Forest Service (2017) Forest Health, Southern Regional Extension Forestry. Distribution of counties with laurel wilt as of 14 April 2017.
  70. (USDA-NASS) United States Department of Agriculture, National Agricultural Statistics Service (2017) Noncitrus fruits and nuts 2016 summary. USDA, Washington DC.
  71. Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromat A 11:463–471CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research StationMiamiUSA
  2. 2.University of Delaware, Carvel Research & Education CenterGeorgetownUSA
  3. 3.University of Florida, Tropical Research and Education CenterHomesteadUSA

Personalised recommendations