Advertisement

Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid

  • Massimo GiorginiEmail author
  • Xin-Geng Wang
  • Yan Wang
  • Fu-Shou Chen
  • Evelyne Hougardy
  • Hong-Mei Zhang
  • Zong-Qi Chen
  • Hong-Yin Chen
  • Chen-Xi Liu
  • Pasquale Cascone
  • Giorgio Formisano
  • Gislaine A. Carvalho
  • Antonio Biondi
  • Matthew Buffington
  • Kent M. Daane
  • Kim A. Hoelmer
  • Emilio Guerrieri
Orginal Paper

Abstract

Drosophila suzukii is native to East Asia and an invasive pest of fruit crops widely established in the Americas and Europe. The lack of effective indigenous parasitoids of D. suzukii in the invaded regions prompted surveys for co-evolved parasitoids in Yunnan Province, China, from 2013 to 2016. From banana-baited traps (2013–2015), 458 parasitoids of drosophilids were reared, comprised of Braconidae (49.56%), Figitidae (37.55%), Diapriidae (7.42%), and Pteromalidae (5.46%). Larval parasitoids included seven braconid species, all Asobara and primarily Asobara mesocauda, and five figitid species, primarily Leptopilina japonica japonica. Pupal parasitoids were the diapriid Trichopria drosophilae and the pteromalid Pachycrepoideus vindemiae. Collections from wild fruits (2016) provided more interesting results. From the puparia of drosophilids collected, comprised of D. suzukii and Drosophila pulchrella, emerged 1354 parasitoids. The larval parasitoids Ganaspis brasiliensis and L. j. japonica were the prevalent species, reaching a fairly high percentage parasitism of fly puparia collected from berries of Rubus foliosus (22.35%), R. niveus (18.81%), Fragaria moupinensis (19.75%), and Sambucus adnata (63.46%). Ganaspis brasiliensis was the dominant species and was collected only from D. suzukii and D. pulchrella-infested fruits and never from banana-baited traps. Molecular analysis showed two G. brasiliensis lineages, which are discussed with respect to previous Japanese collections. Quarantine tests showed that G. brasiliensis developed from D. suzukii and two closely related hosts (Drosophila melanogaster and Drosophila simulans) but did not develop from seven non-target drosophilid species. Our results suggest that G. brasiliensis is a promising classical biocontrol agent for release in invaded regions.

Keywords

Classical biological control Ganaspis brasiliensis Genetic variation Leptopilina japonica japonica Invasive species Spotted wing drosophila 

Notes

Acknowledgements

We thank Yanan Zheng (Shengyang Agricultural University, China) for help with collections in Yunnan; Huan-Chong Wang (Yunnan University, China) and Shu-Dong Zhang (Kunming Institute of Botany, Chinese Academy of Sciences) for identification of plant species sampled in this work; Alexandra Wood, Alexandra Nance, John Jones, Kei-Lin Ooi and Jeremy Anderson (University of California, Berkeley) for assistance with quarantine studies. Funding for research was supported in the USA by the USDA-NIFA award # 2010-51181-21167, the USDA APHIS (Farm bill, fund 14-8130-0463), and the California Cherry Board, and in Italy by the UE FP7/2007-2013 project ASCII under grant agreement PIRSES-GA-2012-318246. Mention of trade names or commercial products in this publication is solely to provide specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10340_2018_1068_MOESM1_ESM.docx (402 kb)
Supplementary material 1 (DOCX 401 kb)

References

  1. Asplen MK, Anfora G, Biondi A, Choi D-S et al (2015) Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494.  https://doi.org/10.1007/s10340-015-0681-z CrossRefGoogle Scholar
  2. Beers EH, Van Steenwyk RA, Shearer PW, Coates WW, Grant JA (2011) Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag Sci 67:1386–1395.  https://doi.org/10.1002/ps.2279 CrossRefGoogle Scholar
  3. Biondi A, Wang X, Miller JC, Miller B et al (2017) Innate olfactory responses of Asobara japonica toward fruits infested by the invasive spotted wing Drosophila. J Insect Behav 30:495–506.  https://doi.org/10.1007/s10905-017-9636-y CrossRefGoogle Scholar
  4. Buffington ML, Forshage M (2016) Redescription of Ganaspis brasiliensis (Ihering, 1905), new combination (Hymenoptera: Figitidae), a natural enemy of the invasive Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). Proc Entomol Soc Wash 118:1–13.  https://doi.org/10.4289/0013-8797.118.1.1 CrossRefGoogle Scholar
  5. Carton Y, Boulétreau B, van Alphen JJM, van Lenteren JC (1986) The Drosophila parasitic wasps. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 3e. Academic Press, London, pp 347–394Google Scholar
  6. Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63:40–47.  https://doi.org/10.1016/j.biocontrol.2012.05.005 CrossRefGoogle Scholar
  7. Daane KM, Wang X-G, Biondi A, Miller B et al (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J Pest Sci 89:823–835.  https://doi.org/10.1007/s10340-016-0740-0 CrossRefGoogle Scholar
  8. Desneux N, Blahnik R, Delebecque CJ, Heimpel GE (2012) Host phylogeny and specialisation in parasitoids. Ecol Lett 15:453–460CrossRefGoogle Scholar
  9. Fleury F, Gibert P, Ris N, Allemand R (2009) Ecology and life history evolution of frugivorous Drosophila parasitoids. In: Prevost G (ed) Advances in parasitology: parasitoids of Drosophila. Advances in parasitology, vol 70. Academic Press, New York, pp 3–44.  https://doi.org/10.1016/s0065-308x(09)70001-6 Google Scholar
  10. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol 3:294–299Google Scholar
  11. Gabarra R, Riudavets J, Rodríguez GA, Pujade-Villar J, Arnó J (2015) Prospects for the biological control of Drosophila suzukii. Biocontrol 60:331–339CrossRefGoogle Scholar
  12. Gebiola M, Bernardo U, Monti MM, Navone P, Viggiani G (2009) Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferriere and Delucchi (Hymenoptera: Eulophidae): two closely related valid species. J Nat Hist 43:2465–2480.  https://doi.org/10.1080/00222930903105088 CrossRefGoogle Scholar
  13. Girod P, Borowiec N, Buffington M, Chen G et al (2018a) The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia. Sci Rep 8:11839.  https://doi.org/10.1038/s41598-018-29555-8 CrossRefGoogle Scholar
  14. Girod P, Lierhmann O, Urvois T, Turlings TCJ, Kenis M, Haye T (2018b) Host specifcity of Asian parasitoids for potential classical biological control of Drosophila suzukii. J Pest Sci 91:1241–1250.  https://doi.org/10.1007/s10340-018-1003-z CrossRefGoogle Scholar
  15. Girod P, Rossignaud L, Haye T, Turlings TCJ, Kenis M (2018c) Development of Asian parasitoids in larvae of Drosophila suzukii feeding on blueberry and artificial diet. J Appl Entomol 142:483–494.  https://doi.org/10.1111/jen.12496 CrossRefGoogle Scholar
  16. Guerrieri E, Giorgini M, Cascone P, Carpenito S, van Achterberg C (2016) Species diversity in the parasitoid genus Asobara (Hymenoptera: Braconidae) from the native area of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae). PLoS ONE.  https://doi.org/10.1371/journal.pone.0147382 Google Scholar
  17. Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357.  https://doi.org/10.1002/ps.2265 CrossRefGoogle Scholar
  18. Haye T, Girod P, Cuthbertson AGS, Wang XG et al (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci 89:643–651.  https://doi.org/10.1007/s10340-016-0737-8 CrossRefGoogle Scholar
  19. Ideo S, Watada M, Mitsui H, Kimura MT (2008) Host range of Asobara japonica (Hym.: Braconidae), a larval parasitoid of drosophilid flies. Entomol Sci 11:1–6CrossRefGoogle Scholar
  20. Kaçar G, Wang XG, Biondi A, Daane KM (2017) Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE 12(8):e0183525.  https://doi.org/10.1371/journal.pone.0183525 CrossRefGoogle Scholar
  21. Kacsoh BZ, Schlenke TA (2012) High hemocyte load is associated with increased resistance against parasitoids in Drosophila suzukii, a relative of D. melanogaster. PLoS ONE 7:e34721.  https://doi.org/10.1371/journal.pone.0034721 CrossRefGoogle Scholar
  22. Kasuya N, Mitsui H, Ideo S, Watada M, Kimura MT (2013) Ecological, morphological and molecular studies on Ganaspis individuals (Hymenoptera: Figitidae) attacking Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 48:87–92.  https://doi.org/10.1007/s13355-012-0156-0 CrossRefGoogle Scholar
  23. Kenis M, Tonina L, Eschen R, van der Sluis B et al (2016) Non-crop plants used as hosts by Drosophila suzukii in Europe. J Pest Sci 89:735–748.  https://doi.org/10.1007/s10340-016-0755-6 CrossRefGoogle Scholar
  24. Kimura MT, Novković B (2015) Local adaptation and ecological fitting in host use of the Drosophila parasitoid Leptopilina japonica. Ecol Res 30:499–505.  https://doi.org/10.1007/s11284-015-1244-8 CrossRefGoogle Scholar
  25. Klick J, Lee JC, Hagler JR, Bruck DJ, Yang WQ (2016) Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. J Appl Entomol 140:37–46.  https://doi.org/10.1111/jen.12234 CrossRefGoogle Scholar
  26. Knoll V, Ellenbroek T, Romeis J, Collatz J (2017) Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii. Sci Rep 7:e40697.  https://doi.org/10.1038/srep40697 CrossRefGoogle Scholar
  27. Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701.  https://doi.org/10.1093/molbev/mss020 CrossRefGoogle Scholar
  28. Lasson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics (Oxford) 30:3276–3278.  https://doi.org/10.1093/bioinformatics/btu531 CrossRefGoogle Scholar
  29. Lee JC, Dreves AJ, Cave AM, Kawai S et al (2015) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Am 108:117–129.  https://doi.org/10.1093/aesa/sau014 CrossRefGoogle Scholar
  30. Lue CH, Driskell AC, Leips J, Buffington ML (2016) Review of the genus Leptopilina (Hymenoptera, Cynipoidea, Figitidae, Eucoilinae) from the Eastern United States, including three newly described species. J Hymenopt Res 53:35–76.  https://doi.org/10.3897/jhr.53.10369 CrossRefGoogle Scholar
  31. Markow TA, O’Grady PM (2006) Drosophila: a guide to species identification and use (chapter 1). Academic Press, London, p 13Google Scholar
  32. Matsuura A, Mitsui H, Kimura MT (2018) A preliminary study on distributions and oviposition sites of Drosophila suzukii (Diptera: Drosophilidae) and its parasitoids on wild cherry tree in Tokyo, central Japan. Appl Entomol Zool 53:47–53.  https://doi.org/10.1007/s13355-017-0527-7 CrossRefGoogle Scholar
  33. Mazzetto F, Marchetti E, Amiresmaeili N, Sacco D et al (2016) Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J Pest Sci 89:837–850.  https://doi.org/10.1007/s10340-016-0746-7 CrossRefGoogle Scholar
  34. McDonald JH (2014) Handbook of biological statistics, 3rd edn. SparkyHouse Publishing, BaltimoreGoogle Scholar
  35. Miller B, Anfora G, Buffington M, Daane KM et al (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. Bull Insectol 68:255–263Google Scholar
  36. Mitsui H, Kimura MT (2010) Distribution, abundance and host association of two parasitoid species attacking frugivorous drosophilid larvae in central Japan. Eur J Entomol 107:535–540CrossRefGoogle Scholar
  37. Mitsui H, Van Achterberg K, Nordlander G, Kimura MT (2007) Geographical distributions and host associations of larval parasitoids of frugivorous Drosophilidae in Japan. J Nat Hist 41:1731–1738.  https://doi.org/10.1080/00222930701504797 CrossRefGoogle Scholar
  38. Murata Y, Ideo S, Watada M, Mitsui H, Kimura MT (2009) Genetic and physiological variation among sexual and parthenogenetic populations of Asobara japonica (Hymenoptera: Braconidae), a larval parasitoid of drosophilid flies. Eur J Entomol 106:171–178CrossRefGoogle Scholar
  39. Nixon GEJ (1939) Notes on Alysiinae with descriptions of three new species (Hym., Braconidae). Proc R Entomol Soc Lond Ser B Taxon 8:61–67Google Scholar
  40. Nomano FY, Mitsui H, Kimura MT (2015) Capacity of Japanese Asobara species (Hymenoptera; Braconidae) to parasitize a fruit pest Drosophila suzukii (Diptera; Drosophilidae). J Appl Entomol 139:105–113.  https://doi.org/10.1111/jen.12141 CrossRefGoogle Scholar
  41. Nomano FY, Kasuya N, Matsuura A, Suwito A, Mitsui H, Buffington ML, Kimura MT (2017) Genetic differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia. Appl Entomol Zool 52:429–437.  https://doi.org/10.1007/s13355-017-0493-0 CrossRefGoogle Scholar
  42. Poyet M, Havard S, Prévost G, Chabrerie O, Doury G, Gibert P, Eslin P (2013) Resistance of Drosophila suzukii to the larval parasitoids Leptopilina heterotoma and Asobara japonica is related to haemocyte load. Physiol Entomol 38:45–53.  https://doi.org/10.1111/phen.12002 CrossRefGoogle Scholar
  43. Ronquist F, Teslenko M, van der Mark P, Ayres DL et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefGoogle Scholar
  44. Rossi Stacconi MV, Grassi A, Dalton DT, Miller B et al (2013) First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas. Entomologia 1:1–15CrossRefGoogle Scholar
  45. Rossi Stacconi MV, Buffington M, Daane KM, Dalton DT et al (2015) Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol Control 84:28–35.  https://doi.org/10.1016/j.biocontrol.2015.02.003 CrossRefGoogle Scholar
  46. Rossi Stacconi MV, Panel A, Baser N, Ioriatti C, Pantezzi T, Anfora G (2017) Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol Control 112:20–27CrossRefGoogle Scholar
  47. Stover BC, Muller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform.  https://doi.org/10.1186/1471-2105-11-7 Google Scholar
  48. Takamori H, Watabe H-A, Fuyama Y, Zhang Y-P, Aotsuka T (2006) Drosophila subpulchrella, a new species of the Drosophila suzukii species subgroup from Japan and China (Diptera: Drosophilidae). Entomol Sci 9:121–128CrossRefGoogle Scholar
  49. Van Timmeren S, Isaacs R (2013) Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot 54:126–133.  https://doi.org/10.1016/j.cropro.2013.08.003 CrossRefGoogle Scholar
  50. Wang XG, Kaçar G, Biondi A, Daane KM (2016a) Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61:387–397.  https://doi.org/10.1007/s10526-016-9720-9 CrossRefGoogle Scholar
  51. Wang XG, Stewart TE, Biondi A, Chavez B, Ingels C, Caprile J, Grant J, Walton VM, Daane KM (2016b) Population dynamics and ecology of Drosophila suzukii in Central California. J Pest Sci 89:701–712.  https://doi.org/10.1007/s10340-016-0747-6 CrossRefGoogle Scholar
  52. Wang XG, Nance A, Jones JML, Hoelmer KA, Daane KM (2018) Aspects of the biology and developmental strategy of two Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Biol Control 121:58–65.  https://doi.org/10.1016/j.biocontrol.2018.02.010 CrossRefGoogle Scholar
  53. Wiman NG et al (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci 89:653–665.  https://doi.org/10.1007/s10340-016-0757-4 CrossRefGoogle Scholar
  54. Zhao C, Li P, Xie D-S, Hu C-H, Xiong Y, He L-Y, Li W-H, Xiao C, Yang P-Y, Li Z-Y (2017) The seasonal abundance of Drosophila suzukii in orchards and seasonal variation in fruit damage caused by this pest. Chin J Appl Entomol 54:724–729.  https://doi.org/10.7679/j.issn.2095-1353.2017.088 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Massimo Giorgini
    • 1
    Email author
  • Xin-Geng Wang
    • 2
  • Yan Wang
    • 3
  • Fu-Shou Chen
    • 3
  • Evelyne Hougardy
    • 2
  • Hong-Mei Zhang
    • 3
  • Zong-Qi Chen
    • 3
  • Hong-Yin Chen
    • 4
  • Chen-Xi Liu
    • 4
  • Pasquale Cascone
    • 1
  • Giorgio Formisano
    • 1
  • Gislaine A. Carvalho
    • 5
  • Antonio Biondi
    • 6
  • Matthew Buffington
    • 7
  • Kent M. Daane
    • 2
  • Kim A. Hoelmer
    • 8
  • Emilio Guerrieri
    • 1
    • 9
  1. 1.Institute for Sustainable Plant ProtectionNational Research Council of ItalyPorticiItaly
  2. 2.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA
  3. 3.Institute of Agricultural Environment and ResourcesYunnan Academy of Agricultural ScienceKunmingChina
  4. 4.Institute for Plant ProtectionChinese Academy of Agricultural ScienceBeijingChina
  5. 5.Department of EntomologyFederal University of VicosaVicosaBrazil
  6. 6.Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
  7. 7.USDA Agricultural Research Service, Systematic Entomology LaboratoryWashingtonUSA
  8. 8.Beneficial Insects Introduction Research UnitUSDA Agricultural Research ServiceNewarkUSA
  9. 9.Department of Life SciencesThe Natural History MuseumLondonUK

Personalised recommendations