Advertisement

Brain activations associated with scientific reasoning: a literature review

  • Lucian Nenciovici
  • Geneviève Allaire-Duquette
  • Steve Masson
Review
  • 14 Downloads

Abstract

Scientifically literate individuals are defined as individuals who are able to apply scientific knowledge and use scientific reasoning skills to solve problems. In recent years, cognitive neuroscience has turned its attention to understanding the brain activation patterns associated with scientific reasoning skills, but this work has not been systematically reviewed for more than a decade. The present study reviews neuroimaging studies related to three types of scientific reasoning tasks: overcoming misconceptions, causal reasoning, and hypothesis generation. These studies indicate converging evidence for the involvement of (1) lateral prefrontal areas, reinforcing the idea of an association between scientific reasoning and executive functions, and (2) middle temporal areas, suggesting an association between scientific reasoning and declarative memory. Potential educational implications and leads for future research are discussed.

Keywords

Scientific reasoning Neuroimaging Overcoming misconceptions Causal reasoning Hypothesis generation 

References

  1. Adler CM, Sax KW, Holland SK, Schmithorst V, Rosenberg L, Strakowski SM (2001) Changes in neuronal activation with increasing attention demand in healthy volunteers: an fMRI study. Synapse 42(4):266–272CrossRefPubMedGoogle Scholar
  2. Aguirre GK (2003) Functional imaging in behavioral neurology and cognitive neuropsychology. In: Feinberg TE, Farah MJ (eds) Behavioral neurology and neuropsychology, 2nd edn. McGraw-Hill, New York, pp 85–96Google Scholar
  3. Alfieri L, Brooks PJ, Aldrich NJ, Tenenbaum HR (2011) Does discovery-based instruction enhance learning? J Educ Psychol 103:1–18.  https://doi.org/10.1037/a0021017 CrossRefGoogle Scholar
  4. Aminoff EM, Kveraga K, Bar M (2013) The role of the parahippocampal cortex in cognition. Trends Cogn Sci 17(8):379–390.  https://doi.org/10.1016/j.tics.2013.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann KP, Paulus W (2004) Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 16(4):521–527CrossRefPubMedGoogle Scholar
  6. Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116.  https://doi.org/10.1038/nn1003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177CrossRefPubMedGoogle Scholar
  8. Auffermann WF, Ngan SC, Sarkar S, Yacoub E, Hu X (2001) Nonadditive two-way ANOVA for event-related fMRI data analysis. NeuroImage 14:406–416.  https://doi.org/10.1006/nimg.2001.0809 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Babai R, Amsterdamer A (2008) The persistence of solid and liquid naive conceptions: a reaction time study. J Sci Educ Technol 17:553–559CrossRefGoogle Scholar
  10. Babai R, Levyadun T, Stavy R, Tirosh D (2006) Intuitive rules in science and mathematics: a reaction time study. Int J Math Educ Sci Technol 37(8):913–924.  https://doi.org/10.1080/00207390600794958 CrossRefGoogle Scholar
  11. Babai R, Sekal R, Stavy R (2010) Persistence of the intuitive conception of living things in adolescence. J Sci Educ Technol 19:20–26CrossRefGoogle Scholar
  12. Babai R, Shalev E, Stavy R (2015) A warning intervention improves students’ ability to overcome intuitive interference. ZDM 47:735–745CrossRefGoogle Scholar
  13. Babiloni C, Ferretti A, Del Gratta C, Carducci F, Vecchi F, Romani GL, Rossini PM (2005) Human cortical responses during one-bit delayed-response tasks: an fMRI study. Brain Res Bull 65:383–390.  https://doi.org/10.1016/j.brainresbull.2005.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Badre D, Wagner AD (2007) Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45:2883–2901CrossRefPubMedGoogle Scholar
  15. Bahar M, Hansell M (2000) The relationship between some psychological factors and their effects on the performance of grid questions and word association tests. Educ Psychol 20:349–364.  https://doi.org/10.1080/713663739 CrossRefGoogle Scholar
  16. Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27(31):8161–8165CrossRefPubMedGoogle Scholar
  17. Banich M, Milham M, Atchley R, Cohen N, Webb A, Wszalek T, Kramer A, Liang Z, Barad V, Gullett D, Shah C (2000) Prefrontal cortex play a predominant role in imposing an attentional ‘set’: evidence from Fmri. Cogn Brain Res 10:1–9CrossRefGoogle Scholar
  18. Barnard JK, Jacobs RL (2007, February) The effects of a near versus far transfer of training approach on trainees’ confidence to coach related and unrelated tasks. Paper presented at the international research conference in the Americas of the Academy of Human Resource Development, Indianapolis, IN, USAGoogle Scholar
  19. Bartolomeo P, deSchotten MT, Chica AB (2012) Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci.  https://doi.org/10.3389/fnhum.2012.00110 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Beauchamp MS, Lee KE, Haxby JV, Martin A (2002) Parallel visual motion processing streams for manipulable objects and human movements. Neuron 34:149–159CrossRefPubMedGoogle Scholar
  21. Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7:1190–1192.  https://doi.org/10.1038/nn1333 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Becker JT, MacAndrew DK, Fiez JA (1999) A comment on the functional localization of the phonological storage subsystem of working memory. Brain Cogn 41:27–38CrossRefPubMedGoogle Scholar
  23. Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22.  https://doi.org/10.1080/00221309.1948.9918159 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20(1):1–25CrossRefPubMedGoogle Scholar
  25. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369CrossRefPubMedGoogle Scholar
  26. Bes B, Sloman S, Lucas CG, Raufaste E (2012) Non-Bayesian inference: causal structure trumps correlation. Cogn Sci 36(7):1178–1203CrossRefPubMedGoogle Scholar
  27. Best JR, Miller PH (2010) A developmental perspective on executive function. Child Dev 81(6):1641–1660.  https://doi.org/10.1111/j.1467-8624.2010.01499.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Blakemore S-J, Fonlupt P, Pachot-Clouard M, Darmon C, Boyer P, Meltzoff AN, Segebarth C, Decety J (2001) How the brain perceives causality: an event related fMRI study. NeuroReport 12(17):3741–3746CrossRefPubMedGoogle Scholar
  29. Botvinick M (2007) Conflict monitoring and decision-making: reconciling two perspectives on anterior cingulate function. Cogn Affect Behav Neurosci 7(4):356–366CrossRefPubMedGoogle Scholar
  30. Botvinick M, Braver T, Barch D, Carter C, Cohen J (2001) Conflict monitoring and cognitive control. Psychol Rev 108:625–652CrossRefGoogle Scholar
  31. Botvinick M, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8(12):539–546CrossRefPubMedGoogle Scholar
  32. Brault Foisy L-M, Potvin P, Riopel M, Masson S (2015) Is inhibition involved in overcoming a common physics misconception in mechanics? Trends Neurosci Educ 4:26–36.  https://doi.org/10.1016/j.tine.2015.03.001 CrossRefGoogle Scholar
  33. Brickhouse NW, Ebert-May D, Wier BA (1989) Scientific literacy: perspectives of school administrators, teachers, students, and scientists from an urban mid-Atlantic community. In: Champagne AB, Lovitts BE, Callinger BJ (eds) This year in school science. Scientific literacy. AAAS, Washington, pp 157–176Google Scholar
  34. Buchsbaum BR, Greer S, Chang WL, Berman KF (2005) Meta-analysis of neuroimaging studies of the wisconsin card-sorting task and component processes. Hum Brain Mapp 25:35–45.  https://doi.org/10.1016/j.neulet.2006.05.063 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Buchsbaum MS, Buchsbaum BR, Chokron S, Tang C, Wei T-C, Bynea W (2006) Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers. Neurosci Lett 404:282–287.  https://doi.org/10.1016/j.neulet.2006.05.063 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Bullock M, Gelman R, Baillargeon R (1982) The development of causal reasoning. In: Friedman W (ed) The developmental psychology of time. Academic Press, New York, pp 209–254Google Scholar
  37. Bush G, Paul J, Whalen PJ, Rosen B, Jenike MA, McInerney SC, Rauch SL (1998) The counting Stroop: an interference task specialized for functional neuroimaging—validation study with functional MRI. Hum Brain Mapp 6:270–282CrossRefPubMedGoogle Scholar
  38. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 99:523–528.  https://doi.org/10.1073/pnas.012470999 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Bush G, Whalen PG, Shin LM, Rauch SL (2006) The counting Stroop: a cognitive interference task. Nat Protoc 1(1):230–233.  https://doi.org/10.1038/nprot.2006.35 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafo MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365–376.  https://doi.org/10.1038/nrn3475 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Carolan TF, Hutchins SD, Wickens CD, Cumming JM (2014) Costs and benefits of more learner freedom: meta-analyses of exploratory and learner control training methods. Hum Factors 56:999–1014.  https://doi.org/10.1177/0018720813517710 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, Castellanos FX, Haxby JV, Noll DC, Cohen JD, Forman SD (1997) A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J Cogn Neurosci 9:835–847CrossRefPubMedGoogle Scholar
  43. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583.  https://doi.org/10.1093/brain/awl004 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Cepni S, Keles E (2006) Turkish students' conceptions about the simple electric circuits. Int J Sci Math Educ 4(2):269–291CrossRefGoogle Scholar
  45. Chang J-Y, Chen L, Luo F, Shi L-H, Woodward DJ (2002) Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: ensemble recording in freely moving rats. Exp Brain Res 142:67–80.  https://doi.org/10.1007/s00221-001-0918-3 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Chen G, Saad ZS, Britton JC, Pine DS, Cox RW (2013) Linear mixed-effects modeling approach to FMRI group analysis. Neuroimage 73:176–190.  https://doi.org/10.1016/j.neuroimage.2013.01.047 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Cheng PW (1997) From covariation to causation: a causal power theory. Psychol Rev 104:367–405CrossRefGoogle Scholar
  48. Cheng K, Fujita H, Kanno I, Miura S, Tanaka K (1995) Human cortical regions activated by wide-field visual motion: an H2150 PET study. J Neurophysiol 74(1):413–427CrossRefPubMedGoogle Scholar
  49. Christoff K, Prabhakaran V, Dorfman J, Zhao Z, Kroger JK, Holyoak KJ, Gabrieli JDE (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage 14:1136–1149.  https://doi.org/10.1006/nimg.2001.0922 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Cooper RP, Yule P (2013) Decision making. In: Cooper RP (ed) Modelling high-level cognitive processes. Psychology Press, London, pp 223–268CrossRefGoogle Scholar
  51. Corbetta M, Shulman GL, Miezin FM, Petersen SE (1995) Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270:802–805CrossRefPubMedGoogle Scholar
  52. Coull JT, Frackowiak RSJ, Frith CD (1998) Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36(12):1325–1334CrossRefPubMedGoogle Scholar
  53. Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial visual working memory activate separate neural systems in human cortex. Cereb Cortex 6:39–49CrossRefPubMedGoogle Scholar
  54. Cragg L, Gilmore C (2014) Skills underlying mathematics: the role of executive function in the development of mathematics proficiency. Trends Neurosci Educ 3:63–68CrossRefGoogle Scholar
  55. D’Angelo C, Rutstein D, Harris C, Bernard R, Borokhovski E, Haertel G (2014) Simulations for STEM learning: systematic review and meta-analysis. SRI International, Menlo ParkGoogle Scholar
  56. Daniel R, Wagner G, Koch K, Reichenbach JR, Sauer H, Schlösser RG (2010) Assessing the neural basis of uncertainty in perceptual category learning through varying levels of distortion. J Cogn Neurosci 23:1781–1793.  https://doi.org/10.1162/jocn.2010.21541 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Danili E, Reid N (2004) Some strategies to improve performance in school chemistry based on two cognitive factors. Res Sci Technol Educ 22:203–223CrossRefGoogle Scholar
  58. Delazer M, Ischebeck A, Domahs F, Zamarian L, Koppelstaetter F, Siedentopf CM (2005) Learning by strategies and learning by drill-evidence from an fMRI study. Neuroimage 25(3):838–849.  https://doi.org/10.1016/j.neuroimage.2004.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Dempster FN (1995) Interference and inhibition in cognition: an historical perspective. In: Dempster FN, Brainerd CJ (eds) Interference and inhibition in cognition, pp 3–26.  https://doi.org/10.1016/b978-012208930-5/50002-7
  60. Dempster FN, Corkill AJ (1999) Interference and inhibition in cognition and behavior: unifying themes for educational psychology. Educ Psychol Rev 11(1):1–88CrossRefGoogle Scholar
  61. Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 118(2):115–128CrossRefPubMedGoogle Scholar
  62. Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168.  https://doi.org/10.1146/annurev-psych-113011-143750 CrossRefPubMedPubMedCentralGoogle Scholar
  63. diSessa AA (2017) Conceptual change in a microcosm: comparative learning analysis of a learning event. Hum Dev 60:1–37.  https://doi.org/10.1159/000469693 CrossRefGoogle Scholar
  64. Donaldson D, Petersen S, Ollinger J, Buckner R (2001) Dissociating state and item components of recognition memory using fMRI. Neuroimage 13:129–142CrossRefPubMedGoogle Scholar
  65. Dove A, Pollman S, Schubert T, Wiggins C, von Cramon D (2000) Prefrontal cortex activation in task switching: an event-related fMRI Study. Cogn Brain Res 9:103–109CrossRefGoogle Scholar
  66. Dragos V, Mih V (2015) Scientific literacy in school. Procedia Soc Behav Sci 209:167–172.  https://doi.org/10.1016/j.sbspro.2015.11.273 CrossRefGoogle Scholar
  67. Drouet I (2012) Causes, probabilités, inferences [Causes, probabilities, inferences]. Vuibert, ParisGoogle Scholar
  68. Dunbar KN, Fugelsang JA, Stein C (2007) Do naïve theories ever go away? Using brain and behavior to understand changes in concepts. In: Lovett MC, Shah P (eds) Thinking with data: 33rd Carnegie symposium on cognition. Lawrence Erlbaum, Mahwah, pp 193–206Google Scholar
  69. Dunst B, Benedek M, Jauk E, Bergner S, Koschutnig K, Sommer M, Ischebeck A, Spinath B, Arendasy M, Bühner M, Freudenthaler H (2014) Neural efficiency as a function of task demands. Intelligence 42:22–30CrossRefPubMedPubMedCentralGoogle Scholar
  70. Eisenberger NI, Lieberman MD, Williams KD (2003) Does rejection hurt? An fMRI study of social exclusion. Science 302:290–292.  https://doi.org/10.1126/science.1089134 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ekstrom AD, Bookheimer SY (2007) Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain. Learn Mem 14:645–654CrossRefPubMedPubMedCentralGoogle Scholar
  72. Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the middle and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10:308–317CrossRefPubMedGoogle Scholar
  73. Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a ‘‘local to distributed’’ organization. PLoS Comput Biol 5(5):e1000381.  https://doi.org/10.1371/journal.pcbi.1000381 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Falk EB, Hyde LW, Mitchell C, Faul J, Gonzalez R, Heitzeg MM, Keating DP, Langa KM, Martz ME, Maslowsky J, Morrison FJ (2013) What is a representative brain? Neuroscience meets population science. Proc Natl Acad Sci USA 110(44):17615–17622.  https://doi.org/10.1073/pnas.1310134110 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Fonlupt P (2003) Perception and judgement of physical causality involve different brain structures. Cogn Brain Res 17:248–254.  https://doi.org/10.1016/S0926-6410(03)001125 CrossRefGoogle Scholar
  76. Fortin A, Ptito A, Faubert J, Ptito M (2001) Cortical areas mediating stereopsis in the human brain: a PETstudy. NeuroReport 13(67):895–898Google Scholar
  77. Foucher JR, Otzenberger H, Gounot D (2004) Where arousal meets attention: a simultaneous fMRI and EEG recording study. NeuroImage 22:688–697CrossRefPubMedGoogle Scholar
  78. Friedman NP, Miyake A (2017) Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex 86:186–204.  https://doi.org/10.1016/j.cortex.2016.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Fugelsang JA, Dunbar KN (2005) Brain-based mechanisms underlying complex causal thinking. Neuropsychologia 43:1204–1213.  https://doi.org/10.1016/j.neuropsychologia.2004.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Fugelsang JA, Roser ME, Corballis PM, Gazzaniga MS, Dunbar KN (2005) Brain mechanisms underlying perceptual causality. Cogn Brain Res 24:41–47.  https://doi.org/10.1016/j.cogbrainres.2004.12.001 CrossRefGoogle Scholar
  81. Furtak EM, Seidel T, Iverson H, Briggs DC (2012) Experimental and quasiexperimental studies of inquiry-based science teaching: a meta-analysis. Rev Educ Res 82:300–329.  https://doi.org/10.3102/0034654312457206 CrossRefGoogle Scholar
  82. Garavan H, Ross TJ, Murphy KR, Roche AP, Stein EA (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. NeuroImage 17:1820–1829.  https://doi.org/10.1006/nimg.2002.1326 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Gathercole SE, Pickering SJ, Knight C, Stegmann Z (2004) Working memory skills and educational attainment: evidence from national curriculum assessments at 7 and 14 years of age. Appl Cogn Psychol 18:1–16CrossRefGoogle Scholar
  84. Goel V, Gold B, Kapur S, Houle S (1997) The seat of reason? An imaging study of deductive and inductive reasoning. NeuroReport 8:1305–1310CrossRefPubMedGoogle Scholar
  85. Gold BT, Balota DA, Jones SJ, Powell DK, Smith CD, Andersen AH (2006) Dissociation of automatic and strategic lexical-semantics: functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. J Neurosci 26:6523–6532CrossRefPubMedGoogle Scholar
  86. Grabner RH, Ischebeck A, Reishofer G, Koschutnig K, Delazer M, Ebner F (2009) Fact learning in complex arithmetic and figural–spatial tasks: the role of the angular gyrus and its relation to mathematical competence. Hum Brain Mapp 30(9):2936–2952.  https://doi.org/10.1002/hbm.20720 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86:141–155.  https://doi.org/10.1016/j.pneurobio.2008.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Green AE, Fugelsang JA, Kraemer DJM, Shamosh NA, Dunbar KN (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096:125–137.  https://doi.org/10.1016/j.brainres.2006.04.024 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Greenhalgh T, Peacock R (2005) Effectiveness and efficiency of search methods in systematic reviews of complex evidence: audit of primary sources. BMJ 331:1064–1065.  https://doi.org/10.1136/bmj.38636.593461.68 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Gusnard D, Akbudak E, Shulman G, Raichle M (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci 98:4259–4264CrossRefPubMedGoogle Scholar
  91. Haier RJ, Siegel BV, Nuechterlein KH, Hazlett E, Wu JC, Paek J, Browning HL, Buchsbaum MS (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12:199–217CrossRefGoogle Scholar
  92. Haier RJ, Siegel BV Jr, MacLachlan A, Soderling E, Lottenberg S, Buchsbaum MS (1992) Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomographic study. Brain Res 570:134–143CrossRefPubMedGoogle Scholar
  93. Hanakawa T, Honda M, Sawamoto N, Okada T, Yonekura Y, Fukuyama H, Shibasaki H (2002) The role of rostral brodmann area 6 in mental operation tasks: an integrative neuroimaging approach. Cereb Cortex 12:1157–1170CrossRefPubMedGoogle Scholar
  94. Harris S, Sheth SA, Cohen MS (2008) Functional neuroimaging of belief, disbelief, and uncertainty. Ann Neurol 63:141–147.  https://doi.org/10.1002/ana.21301 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Haruno M, Kawato M (2006) Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. J Neurophysiol 95:948–959CrossRefPubMedGoogle Scholar
  96. Hayasaka S, Peiffer AM, Hugenschmidt CE, Laurienti PJ (2007) Power and sample size calculation for neuroimaging studies by non-central random field theory. Neuroimage 37(3):721–730CrossRefPubMedPubMedCentralGoogle Scholar
  97. Henrich J, Heine SJ, Norenzayan A (2010) The weirdest people in the world. Behav Brain Sci 33:61–135.  https://doi.org/10.1017/S0140525X0999152X CrossRefPubMedPubMedCentralGoogle Scholar
  98. Henry LA, Messer DJ, Nash G (2014) Testing for near and far transfer effects with a short, face-to-face adaptive working memory training intervention in typical children. Infant Child Dev 23:84–103.  https://doi.org/10.1002/icd.1816 CrossRefGoogle Scholar
  99. Henson RNA, Penny WD (2005) ANOVAs and SPM (Technical report). Wellcome Department of Imaging Neuroscience, London, UKGoogle Scholar
  100. Heston TF, King JM (2017) Predictive power of statistical significance. World J Methodol 7(4):112–116.  https://doi.org/10.5662/wjm.v7.i4.112 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences, 5th edn. Houfton Mifflin, BostonGoogle Scholar
  102. Hirshorn EA, Thompson-Schill SL (2006) Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia 44:2547–2557CrossRefPubMedGoogle Scholar
  103. Holbrook J, Rannikmae M (2009) The meaning of scientific literacy. Int J Environ Sci Educ 4(3):275–288Google Scholar
  104. Holmes J, Gathercole SE, Dunning DL (2009) Adaptive training leads to sustained enhancement of poor working memory in children. Dev Sci 12(4):F9–F15.  https://doi.org/10.1111/j.1467-7687.2009.00848.x CrossRefPubMedPubMedCentralGoogle Scholar
  105. Hosseini SM, Rostami M, Yomogida Y, Takahashi M, Tsukiura T, Kawashima R (2010) Aging and decision making under uncertainty: behavioral and neural evidence for the preservation of decision making in the absence of learning in old age. Neuroimage 52:1514–1520.  https://doi.org/10.1016/j.neuroimage.2010.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Houdé O, Borst G (2014) Measuring inhibitory control in children and adults: brain imaging and mental chronometry. Front Psychol 5(616):1–7.  https://doi.org/10.3389/fpsyg.2014.00616 CrossRefGoogle Scholar
  107. Houde O, Moutier S (1996) Deductive reasoning and experimental inhibition training: the case of the matching bias. Curr Psychol Cogn 15:409–434Google Scholar
  108. Houde O, Moutier S (1999) Deductive reasoning and experimental inhibition training: the case of the matching bias. New data and reply to Girotto. Curr Psychol Cogn 18:75–85Google Scholar
  109. Houdé O, Zago L, Crivello F, Moutier S, Pineau A, Mazoyer B, Tzourio-Mazoyer N (2001) Access to deductive logic depends on a right ventromedial prefrontal area devoted to emotion and feeling: evidence from a training paradigm. NeuroImage 14:1486–1492.  https://doi.org/10.1006/nimg.2001.0930 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Howell DC (2002) Statistical methods for psychology, 5th edn. Duxbury, Pacific GroveGoogle Scholar
  111. Hunter SK, Kisley MA, McCarthy L, Freedman R, Rossi RG (2011) Diminished cerebral inhibition in neonates associated with risk factors for schizophrenia: parental psychosis, maternal depression, and nicotine use. Schizophr Bull 37(6):1200–1208CrossRefPubMedGoogle Scholar
  112. Hushman CJ, Marley SC (2015) Guided instruction improves elementary student learning and self-efficacy in science. J Educ Res 108(5):371–381.  https://doi.org/10.1080/00220671.2014.899958 CrossRefGoogle Scholar
  113. Hutzler F (2013) Reverse inference is not a fallacy per se: cognitive processes can be inferred from functional imaging data. NeuroImage.  https://doi.org/10.1016/j.neuroimage.2012.12.075 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Jarvis HL, Gathercole SE (2003) Verbal and nonverbal working memory and achievements on national curriculum tests at 11 and 14 years of age. Educ Child Psychol 20:123–140Google Scholar
  115. Kanwisher N (2010) Functional specificity in the human brain: a window into the functional architecture of the mind. Proc Natl Acad Sci 107(25):11163–11170CrossRefPubMedGoogle Scholar
  116. Kappel V, Lorenz RC, Streifling M, Renneberg B, Lehmkuhl U, Ströhle A, Salbach-Andrae H, Beck A (2015) Effect of brain structure and function on reward anticipation in children and adults with attention deficit hyperactivity disorder combined subtype. Soc Cogn Affect Neurosci 10:945–951.  https://doi.org/10.1093/scan/nsu135 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Karbach J, Strobach T, Schubert T (2015) Adaptive working memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychol 21:285–301.  https://doi.org/10.1080/09297049.2014.899336 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Kelemen D, Rosset E (2009) The human function compunction: teleological explanation in adults. Cognition 111(1):138–143CrossRefPubMedGoogle Scholar
  119. Kelemen D, Rottman J, Seston R (2013) Professional physical scientists display tenacious teleological tendencies: purpose-based reasoning as a cognitive default. J Exp Psychol 142(4):1074–1083.  https://doi.org/10.1037/a0030399 CrossRefGoogle Scholar
  120. Kirschner PA, Sweller J, Clark RE (2006) Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educ Psychol 41:75–86.  https://doi.org/10.1207/s15326985ep4102_1 CrossRefGoogle Scholar
  121. Kohler S, Black SE, Sinden M, Szekely C, Kidron D, Parker JL, Foster JK, Moscovitch M, Wincour G, Szalai JP, Bronskill MJ (1998) Memory impairments associated with hippocampal versus parahippocampal gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia 25(8):901–914CrossRefGoogle Scholar
  122. Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS ONE 2(9):e943.  https://doi.org/10.1371/journal.pone.0000943 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Kroesbergen EH, van’t Noordende JE, Kolkman ME (2014) Training working memory in kindergarten children: effects on working memory and early numeracy. Child Neuropsychol 20(1):23–37.  https://doi.org/10.1080/09297049.2012.736483 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitement of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–485CrossRefPubMedGoogle Scholar
  125. Kuperberg GR, Lakshmanan BM, Caplan DN, Holcomb PJ (2006) Making sense of discourse: an fMRI study of causal inferencing across sentences. Neuroimage 33:343–361CrossRefPubMedGoogle Scholar
  126. Kwon Y-J, Lawson AE (2000) Linking brain growth with the development of scientific reasoning ability and conceptual change during adolescence. J Res Sci Teach 37:44–62CrossRefGoogle Scholar
  127. Kwon Y, Jeong J, Park Y (2006) Roles of abductive reasoning and prior belief in children’s generation of hypotheses about pendulum motion. Sci Educ 15:643–656CrossRefGoogle Scholar
  128. Kwon Y-J, Lee J-K, Shin D-H, Jeong J-S (2009) Changes in brain activation induced by the training of hypothesis generation skills: an fMRI study. Brain Cogn 69:391–397CrossRefPubMedGoogle Scholar
  129. Laetsch WM (1987) A basis for better understanding of science. In: Evered D, O’Connor M (eds) Communicating science to the public. Wiley, London, pp 1–10Google Scholar
  130. Laker DR (1990) Dual dimensionality of training transfer. Hum Resour Dev Q 1(3):209–224CrossRefGoogle Scholar
  131. Lamm C, Windischberger C, Leodolter U, Moser E, Bauer H (2001) Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials. NeuroImage 14:268–283.  https://doi.org/10.1006/nimg.2001.0850 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Lappi O, Rusanen AM (2011) Turing machines and causal mechanisms in cognitive sciences. In: McKay Illari P, Russo F, Williamson J (eds) Causality in the sciences. Oxford University Press, Oxford, pp 224–239Google Scholar
  133. Latzman RD, Elkovitch N, Young J, Clark LA (2010) The contribution of executive functioning to academic achievement among male adolescents. J Clin Exp Neuropsychol 32(5):455–462.  https://doi.org/10.1080/13803390903164363 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Laugksch RC (1998) Scientific literacy: a conceptual overview. Sci Educ 84(1):71–94.  https://doi.org/10.1002/(SICI)1098-237X(200001) CrossRefGoogle Scholar
  135. Lawson AE (1978) The development and validation of a classroom test of formal reasoning. J Res Sci Teach 15(1):11–24CrossRefGoogle Scholar
  136. Lazonder AM, Harmsen R (2016) Meta-analysis of inquiry-based learning: effects of guidance. Rev Educ Res 86(3):681–718.  https://doi.org/10.3102/0034654315627366 CrossRefGoogle Scholar
  137. Lee JK (2009) Dissociation of the brain activation network associated with hypothesis-generating and hypothesis-understanding in biology learning: evidence from an fMRI study (Unpublished doctoral dissertation). Korea National University of Education, CheongwonGoogle Scholar
  138. Lee SE (2014) The impact of working memory training on third grade students’ reading fluency and reading comprehension performance (Doctoral dissertation). Southern Illinois University, Carbondale, ILGoogle Scholar
  139. Lee JK, Kwon YJ (2008) Types of emotion during the hypothesis-generating and hypothesis-understanding process on the biological phenomena. Second Educ Res 56(3):1–36Google Scholar
  140. Lee J-K, Kwon Y-J (2011) Why traditional expository teaching–learning approaches may founder? An experimental examination of neural networks in biology learning. J Biol Educ 45(2):83–92.  https://doi.org/10.1080/00219266.2010.548874 CrossRefGoogle Scholar
  141. Lee J-K, Kwon Y-J (2012) Learning-related changes in adolescents’ neural networks during hypothesis-generating and hypothesis-understanding training. Sci Educ 21:1–31.  https://doi.org/10.1007/s11191-010-9313-4 CrossRefGoogle Scholar
  142. Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224(1):40–62.  https://doi.org/10.1111/j.1749-6632.2011.05958.x CrossRefPubMedPubMedCentralGoogle Scholar
  143. Livelli A, Orofino GC, Calcagno A, Farenga M, Penoncelli D, Guastavigna M, Carosella S, Caramello P, Pia L (2015) Evaluation of a cognitive rehabilitation protocol in HIV patients with associated neurocognitive disorders: efficacy and stability over time. Front Cogn Neurosci 9(306):1–10.  https://doi.org/10.3389/fnbeh.2015.00306 CrossRefGoogle Scholar
  144. Loosli SV, Buschkuehl M, Perrig WJ, Jaeggi SM (2012) Working memory training improves reading processes in typically developing children. Child Neuropsychol 18:62–78.  https://doi.org/10.1080/09297049.2011.575772 CrossRefPubMedPubMedCentralGoogle Scholar
  145. MacDonald AW, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–1838CrossRefPubMedGoogle Scholar
  146. Mahayana IT, Tcheang L, Chen C-Y, Juan C-H, Muggleton NG (2014) The precuneus and visuospatial attention in near and far space: a transcranial magnetic stimulation study. Brain Stimul 7:673–679.  https://doi.org/10.1016/j.brs.2014.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Majerus S, Poncelet M, Van der Linden M, Albouy G, Salmon E, Sterpenich V, Vandewalle G, Collette F, Maquet P (2006) The left intraparietal sulcus and verbal short-term memory: focus of attention or serial order? NeuroImage 32:880–891.  https://doi.org/10.1016/j.neuroimage.2006.03.048 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Masson S, Potvin P, Riopel M, Brault Foisy L-M (2014) Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind Brain Educ 8(1):37–48CrossRefGoogle Scholar
  149. Mateen FJ, Oh J, Tergas AI, Bhayani NH, Kamdar BB (2013) Titles versus titles and abstracts for initial screening of articles for systematic reviews. Clin Epidemiol 5:89–95.  https://doi.org/10.2147/CLEP.S43118 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Mayer R (2004) Should there be a three-strike rule against pure discovery learning? The case for guided methods of instruction. Am Psychol 59:14–19.  https://doi.org/10.1037/0003-066X.59.1.14 CrossRefPubMedPubMedCentralGoogle Scholar
  151. McGann M (2010) Perceptual modalities: modes of presentation or modes of interaction? J Conscious Stud 17(1–2):72–94Google Scholar
  152. McGuire WJ (1997) Creative hypothesis generating in psychology: some useful heuristics. Annu Rev Psychol 48:1–30CrossRefPubMedGoogle Scholar
  153. McKay Illari P, Russo F, Williamson J (2011) Causality in the sciences. Oxford University Press, New YorkCrossRefGoogle Scholar
  154. Melby-Lervåg M, Redick TS, Hulme C (2016) Working memory training does not improve performance on measures of intelligence or other measures of “far-transfer”: evidence from a meta-analytic review. Perspect Psychol Sci 11:512–534.  https://doi.org/10.1177/1745691616635612 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Mendelson R, Shultz TR (1976) Covariation and temporal contiguity as principles of causal inference in young children. J Exp Child Psychol 22(3):408–412CrossRefGoogle Scholar
  156. Menon V, Adleman NE, White CD, Glover GH, Reiss AL (2001) Error-related brain activation during a Go/No Go response inhibition task. Hum Brain Mapp 12(3):131–143CrossRefPubMedGoogle Scholar
  157. Mizuno K, Tanaka M, Ishii A, Tanabe HC, Onoe H, Sadato N, Watanabe Y (2008) The neural basis of academic achievement motivation. NeuroImage 42:369–378CrossRefPubMedGoogle Scholar
  158. Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin card sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21(19):7733–7741CrossRefPubMedGoogle Scholar
  159. Monchi O, Petrides M, Strafella AP, Worsley KJ, Doyon J (2006) Functional role of the basal ganglia in the planning and execution of actions. Ann Neurol 59:257–264.  https://doi.org/10.1002/ana.2074 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Moss HE, Abdallah S, Fletcher P, Bright P, Pilgrim L, Acres K, Tyler LK (2005) Selecting among competing alternatives: selecting and retrieval in the left inferior frontal gyrus. Cereb Cortex 15:1723–1735CrossRefPubMedGoogle Scholar
  161. Moutier S, Angeard N, Houdé O (2002) Deductive reasoning and matching-bias inhibition training: evidence from a debiasing paradigm. Think Reason 8:205–224CrossRefGoogle Scholar
  162. Murphy K, Garavan H (2004) An empirical investigation into the number of subjects required for an event-related fMRI study. NeuroImage 22(2):879–885CrossRefPubMedGoogle Scholar
  163. National Research Council (2005) America’s lab report: investigations in high school science. National Academies Press, WashingtonGoogle Scholar
  164. Neubauer AC, Fink A (2009) Intelligence and neural efficiency: measures of brain activation versus measures of functional connectivity in the brain. Intelligence 37:223–229.  https://doi.org/10.1016/j.intell.2008.10.008 CrossRefGoogle Scholar
  165. Neubauer AC, Fink A, Schrausser DG (2002) Intelligence and neural efficiency: the influence of task content and sex on the brain–IQ relationship. Intelligence 30(6):515–536CrossRefGoogle Scholar
  166. Nevo E, Breznitz Z (2014) Effects of working memory and reading acceleration training on improving working memory abilities and reading skills among third graders. Child Neuropsychol 20:752–765.  https://doi.org/10.1080/09297049.2013.863272 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M, Kriegeskorte N, Milham MP, Poldrack RA, Poline JB, Proal E (2016) Best practices in data analysis and sharing in neuroimaging using MRI (Report No. bioRxiv).  https://doi.org/10.1101/054262
  168. Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120:515–533CrossRefPubMedGoogle Scholar
  169. Novick LR, Cheng PW (2004) Assessing interactive causal influence. Psychol Rev 111(2):455–485.  https://doi.org/10.1037/0033-295X.111.2.455 CrossRefPubMedPubMedCentralGoogle Scholar
  170. OECD (2007) Understanding the brain: the birth of a learning science. OECD Editions, ParisGoogle Scholar
  171. OECD (2017) Education at a glance 2017: OECD indicators. OECD Publishing, Paris.  https://doi.org/10.1787/eag-2017-en CrossRefGoogle Scholar
  172. Ogunkola BJ (2013) Scientific literacy: conceptual overview, importance and strategies for improvement. J Educ Soc Res 3(1):265–274.  https://doi.org/10.5901/jesr.2013.v3n1p265 CrossRefGoogle Scholar
  173. Olesen PJ, Westerberg H, Klingberg T (2004) Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7:75–79CrossRefPubMedGoogle Scholar
  174. Owen AM, Milner B, Petrides M, Evans AC (1996) A specific role for the right parahippocampal gyrus in the retrieval of object-location: a positron emission tomography study. J Cogn Neurosci 8(6):588–602CrossRefPubMedGoogle Scholar
  175. Paas F, Renkl A, Sweller J (2003) Cognitive load theory and instructional design: recent developments. Educ Psychol 38:1–4CrossRefGoogle Scholar
  176. Patterson R, Barbey AK (2005) A multiple systems approach to causal reasoning. In: Grafman J, Krueger F (eds) Neural basis of belief systems. Psychology Press, New York, pp 43–70Google Scholar
  177. Paulus MP, Rogalsky C, Simmons A, Feinstein JS, Stein MB (2003) Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage 19:1439–1448CrossRefPubMedGoogle Scholar
  178. Pinal GD, Nathan MJ (2017) Two kinds of reverse inference in cognitive neuroscience. In: Leefmann J, Hildt E (eds) The human sciences after the decade of the brain. Academic Press, London, pp 121–139CrossRefGoogle Scholar
  179. Pleskac TJ, Dougherty MR, Busemeyer J, Risekamp J, Tenenbaum J (2007) Cognitive decision theory: developing models of real-world decision behavior. Proc Annu Meet Cogn Sci Soc USA 29(29):39–40. https://escholarship.org/uc/item/2hh7462x
  180. Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10(2):59–63CrossRefPubMedGoogle Scholar
  181. Poldrack RA (2011) Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 72(5):692–697.  https://doi.org/10.1016/j.neuron.2011.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Potvin P, Cyr G (2017) Toward a durable prevalence of scientific conceptions: tracking the effects of two interfering misconceptions about buoyancy from preschoolers to science teachers. J Res Sci Teach 54(9):1121–1142.  https://doi.org/10.1002/tea.21396 CrossRefGoogle Scholar
  183. Potvin P, Turmel E, Masson S (2014) Linking neuroscientific research on decision making to the educational context of novice students assigned to a multiple-choice scientific task involving common misconceptions about electrical circuits. Front Hum Neurosci.  https://doi.org/10.3389/fnhum.2014.00014 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Prabhakaran V, Narayanan K, Zhao Z, Gabrieli J (2000) Integration of diverse information in working memory within the frontal lobe. Nat Neurosci 3:85–90CrossRefPubMedGoogle Scholar
  185. Ravizza SM, Delgado MR, Chein JM, Becker JT, Fiez JA (2004) Functional dissociations within the inferior parietal cortex in verbal working memory. NeuroImage 22:562–573.  https://doi.org/10.1016/j.neuroimage.2004.01.039 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Ray E, Schlottmann A (2007) The perception of social and mechanical causality in young children with ASD. Res Autism Spectr Disord 1:266–280.  https://doi.org/10.1016/j.rasd.2006.11.002 CrossRefGoogle Scholar
  187. Redcay E (2008) The superior temporal sulcus performs a common function for social and speech perception: implications for the emergence of autism. Neurosci Biobehav Rev 32(1):123–142.  https://doi.org/10.1016/j.neubiorv.2007.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Rhodes SM, Booth JN, Campbell LE, Blythe RA, Wheate NJ, Delibegovic M (2014) Evidence for a role of executive functions in learning biology. Infant Child Dev 23(1):67–83.  https://doi.org/10.1002/icd.1823 CrossRefGoogle Scholar
  189. Rhodes SM, Booth JN, Palmer LE, Blythe RA, Delibegovic M, Wheate NJ (2016) Executive functions predict conceptual learning of Science. Br J Dev Psychol 34:261–275CrossRefPubMedGoogle Scholar
  190. Roser ME, Fugelsang JA, Dunbar KN, Corballis PM, Gannaziga MS (2005) Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology 19(5):591–602CrossRefPubMedGoogle Scholar
  191. Rusanen A-M (2014) Towards to an explanation for conceptual change: a mechanistic alternative. Sci Educ 23(7):1413–1425.  https://doi.org/10.1007/s11191-013-9656-8 CrossRefGoogle Scholar
  192. Sala G, Gobet F (2017a) Does far transfer exist? Negative evidence from chess, music, and working memory training. Curr Dir Psychol Sci 26(6):515–520.  https://doi.org/10.1177/0963721417712760 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Sala G, Gobet F (2017b) Working memory training in typically developing children: a meta-analysis of the available evidence. Dev Psychol 53(4):671–685.  https://doi.org/10.1037/dev0000265 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Sarter M, Berntson GG, Cacioppo JT (1996) Brain imaging and cognitive neuroscience. Toward strong inference in attributing function to structure. Am Psychol 51(1):13–21CrossRefGoogle Scholar
  195. Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, Konishi J, Shibasaki H (2000) Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging Study. J Neurosci 20(19):7438–7445CrossRefPubMedGoogle Scholar
  196. Schlottmann A, Shanks DR (1992) Evidence for a distinction between judged and perceived causality. Q J Exp Psychol Hum Exp Psychol 44(A):321–342CrossRefGoogle Scholar
  197. Scholl BJ, Nakayama K (2002) Causal capture: contextual effects on the perception of collision events. Psychol Sci 13(6):493–498CrossRefPubMedGoogle Scholar
  198. Sefcsik T, Nemeth D, Janacsek K, Hoffmann I, Scialabba J, Klivenyi P, Gergely GA, Haden G, Vecsei L (2009) The role of the putamen in cognitive functions—a case study. Learn Percept 1(2):215–227.  https://doi.org/10.1556/LP.1.2009.2 CrossRefGoogle Scholar
  199. Seghier ML (2013) The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 19(1):43–61.  https://doi.org/10.1177/1073858412440596 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Seltman AJ (2015) Experimental design and analysis. http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
  201. Shah P, Michal A, Ibrahim A, Rhodes R, Rodriguez F (2017) What makes everyday scientific reasoning so shallenging? Psychol Learn Motiv 66:251–299.  https://doi.org/10.1016/bs.plm.2016.11.006 CrossRefGoogle Scholar
  202. Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fulbright RK, Skudlarski P, Constable RT, Marchione KE, Fletcher JM, Lyon GR, Gore JC (2002) Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry 52:101–110CrossRefPubMedGoogle Scholar
  203. Shaywitz BA, Skudlarski P, Holahan JM, Marchione KE, Constable RT, Fulbright RK, Zelterman D, Lacadie C, Shaywitz SE (2007) Age-related changes in reading systems of dyslexic children. Ann Neurol 61:363–370CrossRefPubMedGoogle Scholar
  204. Shtulman A, Harrington K (2015) Tensions between science and intuition across the lifespan. Top Cogn Sci 8:118–137.  https://doi.org/10.1111/tops.12174 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Shtulman A, Valcarcel J (2012) Scientific knowledge suppresses but does not supplant earlier intuitions. Cognition 124:209–215.  https://doi.org/10.1016/j.cognition.2012.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Shulman L, Keisler E (1966) Learning by discovery: a critical appraisal. Rand McNally, ChicagoGoogle Scholar
  207. Shultz TR, Altmann E, Asselin J (1986) Judging causal priority. Br J Dev Psychol 4:67–74CrossRefGoogle Scholar
  208. Simon O, Mangin J-F, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475–487CrossRefPubMedGoogle Scholar
  209. Simons DJ, Boot WR, Charness N, Gathercole SE, Chabris CF, Hambrick DZ, Stine-Morrow EAL (2016) Do “brain-training” programs work? Psychol Sci Public Interest 17:103–186.  https://doi.org/10.1177/1529100616661983 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Singh-Curry V, Husain M (2009) The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia 47:1434–1448.  https://doi.org/10.1016/j.neuropsychologia.2008.11.033 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Smith EE, Jiondes J (1997) Working memory: a view from neuroimaging. Cogn Psychol 1:5–42CrossRefGoogle Scholar
  212. Snyder HR, Hutchison N, Nyhus E, Curran T, Banich MT, O’Reilly RC, Munakata Y (2010) Neural inhibition enables selection during language processing. Proc Natl Acad Sci USA 107(38):16483–16488CrossRefPubMedGoogle Scholar
  213. Spaniol J, Davidson PSR, Kim ASN, Han H, Moscovitch M, Grady CL (2009) Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47:1765–1779.  https://doi.org/10.1016/j.neuropsychologia.2009.02.028 CrossRefPubMedPubMedCentralGoogle Scholar
  214. St Clair-Thompson HL, Gathercole SE (2006) Executive functions and achievement in school: shifting, updating, inhibition and working memory. Q J Exp Psychol 59(4):745–759.  https://doi.org/10.1080/17470210500162854 CrossRefGoogle Scholar
  215. St Clair-Thompson HL, Stevens R, Hunt A, Bolder E (2010) Improving children’s working memory and classroom performance. Educ Psychol 30(2):203–219.  https://doi.org/10.1080/01443410903509259 CrossRefGoogle Scholar
  216. St Clair-Thompson HL, Overton T, Bugler M (2012) Mental capacity and working memory in chemistry: algorithmic versus open-ended problem solving. Chem Educ Res Pract 13(4):484–489CrossRefGoogle Scholar
  217. Stavy R, Babai R (2010) Overcoming intuitive interference in mathematics: insights from behavioral, brain imaging and intervention studies. ZDM 42:621–633.  https://doi.org/10.1007/s11858-010-0251-z CrossRefGoogle Scholar
  218. Stavy R, Babai R, Tsamir P, Tirosh D, Lai-Lin F, McRobbie C (2006) Are intuitive rules universal? Int J Sci Math Educ 4:417–436CrossRefGoogle Scholar
  219. Stern ER, Gonzalez R, Welsh RC, Taylor SF (2010) Updating beliefs for a decision: neural correlates of uncertainty and underconfidence. J Neurosci 30:8032–8041.  https://doi.org/10.1523/JNEUROSCI.4729-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Sternberg RJ (2008) ‘g’, g’s, or jeez: which is the best model for developing abilities, competencies, and expertise? In: Kyllonen PC, Roberts RD, Stankov L (eds) Extending intelligence: enhancement and new constructs. Taylor & Francis, London, pp 225–266Google Scholar
  221. Studer-Luethi B, Bauer C, Perrig WJ (2016) Working memory training in children: effectiveness depends on temperament. Mem Cogn 44:171–186.  https://doi.org/10.3758/s13421-015-0548-9 CrossRefGoogle Scholar
  222. Sweller J (1999) Instructional design in technical areas. ACER Press, CamberwellGoogle Scholar
  223. Tanaka SC, Honda M, Sadato N (2005) Modality-specific cognitive function of medial and lateral human Brodmann area 6. J Neurosci 25(2):496–501.  https://doi.org/10.1523/JNEUROSCI.4324-04.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Tanaka SC, Samejima K, Okada G, Ueda K, Okamoto Y, Yamawaki S, Doya K (2006) Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics. Neural Netw 19:1233–1241CrossRefPubMedGoogle Scholar
  225. Teixeira-Dias JJC, Pedrosa de Jesus MH, Neri de Souza FN, Watts M (2005) Teaching for quality learning in chemistry. Int J Sci Educ 27(9):1123–1137.  https://doi.org/10.1080/09500690500102813 CrossRefGoogle Scholar
  226. The Royal Society (2011) Neuroscience: implications for education and lifelong learning. The Royal Society, LondonGoogle Scholar
  227. Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci USA 94:14792–14797CrossRefPubMedGoogle Scholar
  228. Treagust DF, Duit R (2008) Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cult Sci Edu 3(2):297–328CrossRefGoogle Scholar
  229. Tuovinen JE, Sweller J (1999) A comparison of cognitive load associated with discovery learning and worked examples. J Educ Psychol 91:334–341CrossRefGoogle Scholar
  230. Ueno A, Abe N, Suzuki M, Shigemune Y, Hirayama K, Mori E, Tashiro M, Itoh M, Fujii T (2009) Reactivation of medial temporal lobe and human V5/MT + during the retrieval of motion information: a PET study. Brain Res 1285:127–134CrossRefPubMedGoogle Scholar
  231. UNESCO (2010) UNESCO science report 2010: the current status of science around the world. http://unesdoc.unesco.org/images/0018/001899/189958e.pdf
  232. UNESCO (2013) Educational neuroscience: more problems than promise?. UNESCO Bangkok, BangkokGoogle Scholar
  233. van Duijvenvoorde AC, Zanolie K, Rombouts SA, Raijmakers ME, Crone EA (2008) Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development. J Neurosci 28(38):9495–9503.  https://doi.org/10.1523/JNEUROSCI.1485-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  234. van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77:477–482CrossRefPubMedGoogle Scholar
  235. van Zee EH (2000) Analysis of a student-generated inquiry discussion. Int J Sci Educ 22(2):115–142.  https://doi.org/10.1080/095006900289912 CrossRefGoogle Scholar
  236. Volz KG, Schubotz RI, von Cramon DY (2004) Why am I unsure? Internal and external attributions of uncertainty dissociated by fMRI. Neuroimage 21:848–857.  https://doi.org/10.1016/j.neuroimage.2003.10.028 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Volz KG, Schubotz RI, von Cramon DY (2005) Variants of uncertainty in decision-making and their neural correlates. Brain Res Bull 67:403–412.  https://doi.org/10.1016/j.brainresbull.2005.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Waberski TD, Gobbele R, Lamberty K, Buchner H, Marshall JC, Fink GR (2008) Timing of visuo-spatial information processing: electrical source imaging related to line bisection judgements. Neuropsychologia 46:1201–1210.  https://doi.org/10.1016/j.neuropsychologia.2007.10.024 CrossRefPubMedPubMedCentralGoogle Scholar
  239. Wandersee JH, Mintzes JJ, Novak JD (1994) Research on alternative conceptions in science. In: Gabel DL (ed) Handbook of research on science teaching and learning. MacMillan, New York, pp 177–210Google Scholar
  240. Ward BD, Chen G (2006) Analysis of variance for fMRI data (Technical report). https://afni.nimh.nih.gov/afni/doc/manual/ANOVAm.pdf
  241. Yoncheva YN, Blau VC, Maurer U, McCandliss BD (2010) Attentional focus during learning impacts N170 ERP responses to an artificial script. Dev Neuropsychol 35(4):423–445.  https://doi.org/10.1080/87565641.2010.480918 CrossRefPubMedPubMedCentralGoogle Scholar
  242. Yue X, Vessel EA, Biederman I (2007) The neural basis of scene preferences. NeuroReport 18:525–529CrossRefPubMedGoogle Scholar
  243. Zavrel E, Sharpsteen E (2016) How the television show “MythBusters” communicates the scientific method. Phys Teach 54:228–232.  https://doi.org/10.1119/1.4944364 CrossRefGoogle Scholar
  244. Zeki S (2015) Area V5-a microcosm of the visual brain. Front Integr Neurosci.  https://doi.org/10.3389/fnint.2015.0002 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Research in Neuroeducation, Département de didactiqueUniversité du Québec à MontréalMontrealCanada
  2. 2.Team for Research in Science and Technology Education, Département de didactiqueUniversité du Québec à MontréalMontrealCanada

Personalised recommendations