Size Effect on Onset and Subsequent Evolution of Adiabatic Shear Band: Theoretical and Numerical Analysis
- 45 Downloads
Abstract
The adiabatic shear instability of ductile materials has attracted more and more attentions of researchers and groups, who have been sparing no effort in further understanding of the underlying mechanism since the first experimental depiction of adiabatic shear instability by Zener and Hollomon. As for the adiabatic shear instability, many factors account for its occurrence, including heat conduction, inertia effect, microstructure effect and so on. However, lots of experimental evidence has shown that metal materials display a strong size effect when the characteristic length scale is in the order of microns. The size effect has also been observed in the analysis of shear band in the ductile materials because the order of the bandwidth stays within the microscale range. However, a comprehensive understanding of the whole process of adiabatic shear banding (ASB), including the early onset and the subsequent evolution, is still lacking. In this work, a gradient plasticity model based on the Taylor-based nonlocal theory feasible for the linear perturbation analysis and convenient for numerical calculation is proposed to investigate the strain gradient on the onset of ASB and the coupling effect of heat conduction, inertia effect and strain gradient at the early stage, as well as on the subsequent evolution process at later stages. As for the onset of ASB, the linear perturbation method is used to consider the effect on the initial formation of ASB. After the investigation of the onset of ASB, the characteristic line method is applied to describe the subsequent nonlinear evolution process of ASB. Three stages of ASB evolution are clearly depicted during the evolution process, and the significance of size effect on the ASB nonlinear evolution process of ASB at different stages is analyzed. With the help of linear perturbation analysis and characteristic line method, a comprehensive description of the role of strain gradient in the ASB from the early onset to the end of the evolution is provided.
Keywords
Adiabatic shear band Strain gradient Nonlinear evolution process Linear perturbation method Characteristic line methodNotes
Acknowledgements
This work was performed under the financial support from the National Natural Science Foundation of China (Grant Nos. 11522220, 11772268, 11527803, 11390361).
References
- 1.Zener C, Hollomon JH. Effect of strain rate on plastic flow of steel. J Appl Phys. 1944;15(1):22–32.CrossRefGoogle Scholar
- 2.Walley SM. Shear localization: a historical overview. Min Met Mater Soc ASM Int. 2007;38(11):2007–629.Google Scholar
- 3.Bai Y. Thermal-plastic instability in simple shear. J Mech Phys Solids. 1982;30(4):195–207.CrossRefzbMATHGoogle Scholar
- 4.Molinari A, Clifton R. Analytical characterization of shear localization in thermoviscoplastic materials. J Appl Mech. 1987;54(4):806–12.CrossRefzbMATHGoogle Scholar
- 5.Wright TW. Approximate analysis for the formation of adiabatic shear band. J Mech Phys Solids. 1990;38(4):515–30.CrossRefGoogle Scholar
- 6.Dodd B, Bai Y. Width of adiabatic shear bands. Met Sci J. 1985;1(1):38–40.Google Scholar
- 7.Dodd B, Bai Y. Width of adiabatic shear bands formed under combined stresses. Met Sci J. 1989;5(6):557–9.Google Scholar
- 8.Dilellio JA, Olmstead WE. Temporal evolution of shear band thickness. J Mech Phys Solids. 1997;45(3):345–59.CrossRefMathSciNetzbMATHGoogle Scholar
- 9.Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J Mech Phys Solids. 1987;35(1):95–119.CrossRefzbMATHGoogle Scholar
- 10.Wright TW, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int J Plast. 1996;12(7):927–34.CrossRefzbMATHGoogle Scholar
- 11.Meyers MA, Nesterenko VF, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization. Mater Sci Eng A. 2001;317(1–2):204–25.CrossRefGoogle Scholar
- 12.Xue Q, Meyers MA, et al. Self-organization of shear bands in titanium and Ti-6Al-4V alloy. Acta Mater. 2002;50(3):575–96.CrossRefGoogle Scholar
- 13.Xue Q, Meyers MA, et al. Self-organization of shear bands in stainless steel. Mater Sci Eng A. 2004;384(1):35–46.CrossRefGoogle Scholar
- 14.Fleck NA, Muller GM, et al. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42(2):475–87.CrossRefGoogle Scholar
- 15.Elssner G, Korn D, et al. The influence of interface impurities on fracture energy of UHV diffusion-bonded metal-ceramic bicrystals. Acta Metall Mater. 1994;31(8):1037–42.Google Scholar
- 16.Lloyd DJ. Particle reinforced aluminum and magnesium matrix composite. Int Mater Res. 1994;39(1):1–23.CrossRefGoogle Scholar
- 17.Stolken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998;46(14):5109–15.CrossRefGoogle Scholar
- 18.Wei Y, Hutchinson JW. Hardness trends in micron scale indentation. J Mech Phys Solids. 2003;51(11–12):2037–56.CrossRefzbMATHGoogle Scholar
- 19.Shi MX, Huang Y, Hwang KC. Plastic fow localization in mechanism-based strain gradient plasticity. Int J Mech Sci. 2000;42:2115–31.CrossRefzbMATHGoogle Scholar
- 20.Chen S, Feng B, Wei Y, Wang T. Prediction of the initial thickness of shear band localization based on a reduced strain gradient theory. Int J Solids Struct. 2010;48(21):3099–111.CrossRefGoogle Scholar
- 21.Aifantis EC. On the microstructural origin of certain inelastic models. J Eng Mater Technol ASME. 1984;106(4):326–30.CrossRefGoogle Scholar
- 22.Muhlhaus HB, Aifantis EC. A variational principle for gradient plasticity. Int J Solids Struct. 1991;28(7):845–57.CrossRefMathSciNetzbMATHGoogle Scholar
- 23.Zbib H, Aifantis EC. On the localization and postlocalization behavior of plastic deformation. Res Mech. 1989;23(2):293–305.Google Scholar
- 24.Fleck NA, Hutchinson JW. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids. 1993;41(12):1825–7.CrossRefMathSciNetzbMATHGoogle Scholar
- 25.Fleck NA, Hutchinson JW. Strain gradient plasticity. Adv Appl Mech. 1997;33:295–361.CrossRefzbMATHGoogle Scholar
- 26.Gao H, Huang Y, et al. Mechanism-based strain gradient plasticity-I. Theory. J Mech Phys Solids. 1999;47(6):1239–63.CrossRefMathSciNetzbMATHGoogle Scholar
- 27.Huang Y, Qu S, et al. A conventional theory of mechanism-based strain gradient plasticity. Int J Plast. 2004;20(4–5):753–82.CrossRefzbMATHGoogle Scholar
- 28.Acharya A, Bassani JL. On non-local flow theories that preserve the classical structure of incremental boundary value problems. In: Micromechanics of plasticity and damage of multiphase materials. IUTAM Symposium, Paris; 1995.Google Scholar
- 29.Acharya A, Bassani JL. Lattice incompatibility and a gradient theory of crystal plasticity. J Mech Phys Solids. 2000;48(8):1565–95.CrossRefMathSciNetzbMATHGoogle Scholar
- 30.Arsenlis A, Parks DM. Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 1999;47(5):1597–611.CrossRefGoogle Scholar
- 31.Dai H, Parks DM. Geometrically-necessary dislocation density in continuum crystal plasticity theory and FEM implementation. Doctor of Philosophy, Massachusetts Institute of Technology; 1997.Google Scholar
- 32.Liu K. Processes modeling of micro-cutting strain gradient effects. Doctor of Philosophy, Georgia Institute of Technology; 2005.Google Scholar
- 33.Ban H, Yao Y, Chen S, Fang D. The coupling effect of size and damage in micro-scale metallic materials. Int J Plast. 2017;95:251–63.CrossRefGoogle Scholar
- 34.Ban H, Yao Y, Chen S, Fang D. A new constitutive model of micro-particle reinforced metal matrix composites with damage effects. Int J Mech Sci. 2019;152:524–34.CrossRefGoogle Scholar
- 35.Zbib HM, Jubran JS. Dynamic shear banding: a three-dimensional analysis. Int J Plast. 1992;8(6):619–41.CrossRefGoogle Scholar
- 36.Zhou F, Wrigth TW, et al. A numerical methodology for investigating the formation of adiabatic shear bands. J Mech Phys Solids. 2006;54(5):904–26.CrossRefzbMATHGoogle Scholar
- 37.Wright TW, Walter JW. On stress collapse in adiabatic shear bands. J Mech Phys Solids. 1987;35(6):701–20.CrossRefGoogle Scholar
- 38.Guo YZ, Li YL, Pan Z, Zhou FH, Wei Q. A numerical study of microstructure effect on adiabatic shear instability: application to nanostructured/ultrafine grained materials. Mech Mater. 2010;42(11):1020–9.CrossRefGoogle Scholar
- 39.Zhou F, Wright TW, et al. The formation of multiple adiabatic shear bands. J Mech Phys Solids. 2006;54(7):1376–400.CrossRefzbMATHGoogle Scholar
- 40.Bonifaz EA, Richards NL. The plastic deformation of non-homogeneous polycrystals. Int J Plast. 2008;24(2):289–301.CrossRefGoogle Scholar
- 41.Chiem CY, Kunze HD, et al. Impact loading and dynamic behaviour of materials. In: International conference on impact loading and dynamic behaviour of materials, Germany; 1988. p. 705–710.Google Scholar
- 42.De Borst R, Muhlhaus HB. Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Method Eng. 1992;35(3):521–39.CrossRefzbMATHGoogle Scholar
- 43.De Borst R, Sluys LJ, et al. Fundamental issues in finite element analysis of localization of deformation. Eng Comput. 1993;10(2):99–122.CrossRefGoogle Scholar
- 44.Morton MED, Woodward RL. The effect of friction on the structure of surfaces produced during ballistic tests. Wear. 1978;47(1):195–209.CrossRefGoogle Scholar
- 45.Molinari A. Collective behavior and spacing of adiabatic shear bands. J Mech Phys Solids. 1997;45(9):1551–75.CrossRefMathSciNetzbMATHGoogle Scholar