Advertisement

Topology-Optimized 4D Printing of a Soft Actuator

  • Ali ZolfagharianEmail author
  • Martin Denk
  • Mahdi Bodaghi
  • Abbas Z. Kouzani
  • Akif Kaynak
Article
  • 65 Downloads

Abstract

Soft robots and actuators are emerging devices providing more capabilities in the field of robotics. More flexibility and compliance attributing to soft functional materials used in the fabrication of these devices make them ideal for delivering delicate tasks in fragile environments, such as food and biomedical sectors. Yet, the intuitive nonlinearity of soft functional materials and their anisotropic actuation in compliant mechanisms constitute an existent challenge in improving their performance. Topology optimization (TO) along with four-dimensional (4D) printing is a powerful digital tool that can be used to obtain optimal internal architectures for the efficient performance of porous soft actuators. This paper employs TO analysis for achieving high bending deflection of a 3D printed polyelectrolyte actuator, which shows bending deformations in response to electrical stimuli in an electrolyte solution. The performance of the actuator is studied in terms of maximum bending and actuation rate compared with a solid, uniformly 3D printed and topology-optimized actuator. The experimental results proved the effectiveness of TO on achieving higher bending deformation and actuation rate against a uniformly 3D printed actuator.

Keywords

Topology optimization 4D printing 3D printing Soft actuator 

References

  1. 1.
    Cohen E, et al. Design methodologies for soft-material robots through additive manufacturing, from prototyping to locomotion. In: ASME 2015 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers; 2015.Google Scholar
  2. 2.
    Koloor S, et al. FE model-based construction and progressive damage processes of FRP composite laminates with different manufacturing processes. Int J Mech Sci. 2018;141:223–35.CrossRefGoogle Scholar
  3. 3.
    Zolfagharian A, et al. Polyelectrolyte soft actuators: 3D printed chitosan and cast gelatin. J 3D Print Addit Manuf. 2018;5(2):138–50.CrossRefGoogle Scholar
  4. 4.
    Zolfagharian A, et al. Evolution of 3D printed soft actuators. J Sens Actuators A Phys. 2016;250:258–72.CrossRefGoogle Scholar
  5. 5.
    Zolfagharian A, et al. Pattern-driven 4D printing. J Sens Actuators A Phys. 2018;274:231–43.CrossRefGoogle Scholar
  6. 6.
    Bodaghi M, Liao W-H. 4D printed tunable mechanical metamaterials with shape memory operations. Smart Mater Struct. 2019;28:045019.CrossRefGoogle Scholar
  7. 7.
    Bodaghi M, Damanpack A, Liao W. Self-expanding/shrinking structures by 4D printing. Smart Mater Struct. 2016;25(10):105034.CrossRefGoogle Scholar
  8. 8.
    Bodaghi M, et al. 4D printing self-morphing structures. J Mater. 2019;12(8):1353.CrossRefGoogle Scholar
  9. 9.
    Gao B, et al. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016;34:746–56.CrossRefGoogle Scholar
  10. 10.
    Zolfagharian A, et al. Rigid elements dynamics modeling of a 3D printed soft actuator. Smart Mater Struct. 2018;28(2):025003.CrossRefGoogle Scholar
  11. 11.
    Zolfagharian A, et al. System identification and robust tracking of a 3D printed soft actuator. Smart Mater Struct. 2019;28:075025. Google Scholar
  12. 12.
    Ionov L. Biomimetic hydrogel-based actuating systems. Adv Funct Mater. 2013;23(36):4555–70.CrossRefGoogle Scholar
  13. 13.
    O’Grady ML, Kuo P-L, Parker KK. Optimization of electroactive hydrogel actuators. ACS Appl Mater Interfaces. 2009;2(2):343–6.CrossRefGoogle Scholar
  14. 14.
    Zolfagharian A, et al. Bending control of a 3D printed polyelectrolyte soft actuator with uncertain model. J Sens Actuators A Phys. 2019;288:134–43.CrossRefGoogle Scholar
  15. 15.
    Shiga T, Kurauchi T. Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci. 1990;39(11–12):2305–20.CrossRefGoogle Scholar
  16. 16.
    Li Y, et al. Electric field actuation of tough electroactive hydrogels cross-linked by functional triblock copolymer micelles. ACS Appl Mater Interfaces. 2016;8(39):26326–31.CrossRefGoogle Scholar
  17. 17.
    Sigmund O, Maute KJS, Optimization M. Topology optimization approaches. Struct Multidiscip Optim. 2013;48(6):1031–55.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Huang X, Xie YM. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des. 2007;43(14):1039–49.CrossRefGoogle Scholar
  19. 19.
    van Dijk NP, et al. Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim. 2013;48(3):437–72.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bendsøe MP, Sigmund O. Material interpolation schemes in topology optimization. J Arch Appl Mech. 1999;69(9–10):635–54.zbMATHGoogle Scholar
  21. 21.
    Yang R, Chen C. Stress-based topology optimization. J Struct Optim. 1996;12(2–3):98–105.CrossRefGoogle Scholar
  22. 22.
    Hongying Z. Development of topology optimized 3D printed soft grippers and dielectric soft sensors. PhD diss. National University of Singapore (Singapore). 2018.Google Scholar
  23. 23.
    Schumacher A. Mathematische Grundlagen der Optimierung. In: Optimierung mechanischer Strukturen. Springer; 2013. p. 45–55.Google Scholar
  24. 24.
    Harzheim L. Der Natur in die Karten geschaut–Optimierungsverfahren aus dem Bereich der Bionik. In: Karosseriebautage Hamburg 2016. Springer; 2016. p. 3–16.Google Scholar
  25. 25.
    Huang X, Xie M. Evolutionary topology optimization of continuum structures: methods and applications. Hoboken: Wiley; 2010.CrossRefzbMATHGoogle Scholar
  26. 26.
    Zhang H, et al. Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands. J IEEE/ASME Trans Mechatron. 2019;24(1):120–31.CrossRefGoogle Scholar
  27. 27.
    He D, Liu S. BESO method for topology optimization of structures with high efficiency of heat dissipation. Int J Simul Multidiscip Des Optim. 2008;2(1):43–8.CrossRefGoogle Scholar
  28. 28.
    Kim M-G, Kim J-H, Cho S-H. Topology design optimization of heat conduction problems using adjoint sensitivity analysis method. J Comput Struct Eng Inst Korea. 2010;23(6):683–91.Google Scholar
  29. 29.
    Gersborg-Hansen A. Topology optimization using the finite volume method. Proceedings of 6th World Congresses of Structural and Multidisciplinary Optimization. 2005.Google Scholar
  30. 30.
    Kaup IA. Frequency Selective Deblocking Filter for HEVC. Master diss. 2018.Google Scholar
  31. 31.
    Svanberg K. The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng. 1987;24(2):359–73.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wiedemann J. Leichtbau: Elemente und Konstruktion. Berlin: Springer; 2007.Google Scholar
  33. 33.
    Tavakoli R, Mohseni SM. Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidiscip Optim. 2014;49(4):621–42.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang H, et al. Topology optimized design, fabrication and evaluation of a multimaterial soft gripper. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft). IEEE; 2018.Google Scholar
  35. 35.
    Stamm C. Hochgeschwindigkeitsvideoverarbeitung im Sport. Informatik-Spektrum. 2013;36(5):431–9.CrossRefGoogle Scholar
  36. 36.
    Wüst S, et al. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10(2):630–40.CrossRefGoogle Scholar
  37. 37.
    Lee JM, et al. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater. 2016;5(22):2856–65.CrossRefGoogle Scholar
  38. 38.
    Wu Q, et al. Solvent-cast 3D printing of chitosan hydrogel scaffolds for guided cell growth. 2016.Google Scholar
  39. 39.
    Hinton TJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758.CrossRefGoogle Scholar
  40. 40.
    Zolfagharian A, et al. 3D printed soft parallel actuator. Smart Mater Struct. 2018;27(4):045019.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2019

Authors and Affiliations

  1. 1.School of EngineeringDeakin UniversityGeelongAustralia
  2. 2.Munich University of Applied SciencesMunichGermany
  3. 3.Department of Engineering, School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations