Advertisement

Estimations of Three Characteristic Stress Ratios for Rockfill Material Considering Particle Breakage

  • Wan-Li GuoEmail author
  • Zheng-Yin Cai
  • Ying-Li Wu
  • Zhi-Zhou Geng
Article
  • 2 Downloads

Abstract

The particle breakage during specimen shearing has a significant influence on the critical-state line (CSL) of the rockfill material. A series of large-scale triaxial compression tests on the rockfill material from Henan Province (HPR) were conducted in a wide range of initial void ratios and confining pressures. The influences of the particle breakage on the critical-state stress ratio \(M_{\mathrm{c}}\), the peak stress ratio \(M_{\mathrm{p}}\) and dilatancy stress ratio \(M_{\mathrm{d}}\) were investigated. The deviatoric stress and particle breakage of the HPR at the critical state increase with the increase in confining pressure, while the influences of the initial void ratio on these behaviors are too little to be considered. The gradient of the CSL in the \(q\hbox {-}p\) space of the rockfill, \(M_{\mathrm{c}}\), was found to be passively correlated with the particle breakage index \(B_{\mathrm{r}}\), rather than being a constant. Additionally, the observed values of \(M_{\mathrm{c}}\) at low confining pressures (low particle breakage occur) will be substantially undervalued if \(M_{\mathrm{c}}\) is estimated as a constant. In the critical-state-theory-based constitutive models, \(M_{\mathrm{p}}\) and \(M_{\mathrm{d}}\) are estimated as the combinations of \(M_{\mathrm{c}}\) and state parameter \(\psi \). It is believed that the simulations of \(M_{\mathrm{p}}\) and \(M_{\mathrm{d}}\) when \(M_{\mathrm{c}}\) is correlated with \(B_{\mathrm{r}}\) are obviously more favorable than those when \(M_{\mathrm{c}}\) is constant.

Keywords

Rockfill Particle breakage Critical-state line Stress ratio 

List of Symbols

qp

deviatoric stress, mean effective stress

e

void ratio

\(e_{\mathrm{c}}\)

critical-state void ratio

\(e_{0}\)

initial void ratio

\(\sigma _{3}\)

confining pressure

\(M_{\mathrm{c}}\)

critical-state stress void

\(q_{\mathrm{c}}, p_{\mathrm{c}}\)

deviatoric stress, mean effective stress at the critical state

\(M_{\mathrm{d}}\)

dilatancy stress ratio

\(q_{\mathrm{p}}, p_{\mathrm{p}}\)

peak deviatoric stress, peak mean effective stress

\(M_{\mathrm{p}}\)

peak stress ratio

\(p_{\mathrm{a}}\)

atmospheric pressure

\(\psi \)

state parameter

\(\varepsilon _{\mathrm{a}}\)

axial strain

\(\varepsilon _{\mathrm{v}}\)

volumetric strain

d

particle size

\(d_{\mathrm{max}}\)

the maximum particle size

D

the fractal dimension

\(B_{\mathrm{r}}\)

particle breakage index

\(\phi \)

friction angle

\(M_{\mathrm{c0}}, \chi , \mu \)

material constants corresponding to \(M_{\mathrm{c}}\)

\(e_{\Gamma }, \lambda , \xi \)

material constants corresponding to the CSL in the \(e\hbox {-}(p/p_{\mathrm{a}})^{\xi }\) space

\(D_{0}, D_{\mathrm{c}}, D_{\mathrm{u}}\)

fractal dimensions of the initial PSD, current PSD and ultimate PSD

Notes

Acknowledgements

The authors gratefully acknowledge the research Grant from National Key R&D Program of China (2017YFC0405102), the financial support (GG201705) from Key Technologies R&D Program of Henan Water Conservancy, and the fund on basic scientific research project of nonprofit central research institutions (Y318005).

References

  1. 1.
    Daouadji A, Hicher PY. An enhanced constitutive model for crushable granular materials. Int J Numer Anal Methods Geomech. 2010;34(6):555–80.zbMATHGoogle Scholar
  2. 2.
    Honkanadavar N, Sharma KG. Testing and modeling the behavior of riverbed and blasted quarried rockfill materials. Int J Geomech. 2014;14(6):04014028.CrossRefGoogle Scholar
  3. 3.
    Sun Y, Xiao Y, Hanif KF. Fractional order modelling of the cumulative deformation of granular soils under cyclic loading. Acta Mech Solida Sin. 2015;28(6):647–58.CrossRefGoogle Scholar
  4. 4.
    Suazo G, Fourie A, Doherty J. Experimental study of the evolution of the soil water retention curve for granular material undergoing cement hydration. J Geotech Geoenviron Eng. 2016;142(7):04016022.CrossRefGoogle Scholar
  5. 5.
    Duncan JM, Chang C-Y. Nonlinear analysis of stress and strain in soils. ASCE Soil Mech Found Division J. 1970;96(5):1629–53.Google Scholar
  6. 6.
    Varadarajan A, Sharma KG, Venkatachalam K, et al. Testing and modeling two rockfill materials. J Geotech Geoenviron Eng. 2003;129(3):206–18.CrossRefGoogle Scholar
  7. 7.
    Liu M, Gao Y, Liu H. An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage. Int J Numer Anal Methods Geomech. 2014;38(9):935–60.CrossRefGoogle Scholar
  8. 8.
    Xiao Y, Liu H. Elastoplastic constitutive model for rockfill materials considering particle breakage. Int J Geomech. 2017;17(1):04016041.CrossRefGoogle Scholar
  9. 9.
    Xu Y, Feng X, Zhu H, Chu F. Fractal model for rockfill shear strength based on particle fragmentation. Granul Matter. 2015;17(6):753–61.CrossRefGoogle Scholar
  10. 10.
    Yao YP, Yamamoto H, Wang ND. Constitutive model considering sand breakage. Soils Found. 2015;48(2):12–5.Google Scholar
  11. 11.
    Guo WL, Zhu JG, Peng WM. Study on dilatancy equation and generalized plastic constitutive model for coarse-grained soil. Chin J Geotech Eng. 2018;40(6):1103–10 (in Chinese).Google Scholar
  12. 12.
    Xiao Y, Liu H, Chen Q, Long L, Xiang J. Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granul Matter. 2017;19(4):71.CrossRefGoogle Scholar
  13. 13.
    Li XS, Wang Y. Linear representation of steady-state line for sand. J Geotech Geoenviron Eng. 1998;124(12):1215–7.CrossRefGoogle Scholar
  14. 14.
    Wan RG, Guo PJ. A simple constitutive model for granular soils: modified stress-dilatancy approach. Comput Geotech. 1998;22(2):109–33.CrossRefGoogle Scholar
  15. 15.
    Biarez J, Hicher PY. Elementary mechanics of soil behaviour: saturated remoulded soils. Amsterdam: A.A. Balkema; 1994.Google Scholar
  16. 16.
    Li XS, Dafalias YF, Wang ZL. State-dependent dilatancy in critical-state constitutive modeling of sand. Can Geotech J. 1999;36(4):599–611.CrossRefGoogle Scholar
  17. 17.
    Jin YF, Wu ZX, Yin ZY, Shen JS. Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech. 2017;12(6):1–23.CrossRefGoogle Scholar
  18. 18.
    Roscoe KH, Schofield AN, Thurairajah A. Yielding of clays in states wetter than critical. Géotechnique. 1963;13(3):211–40.CrossRefGoogle Scholar
  19. 19.
    Muir Wood D, Maeda K. Changing grading of soil: effect on critical states. Acta Geotech. 2008;3(1):3–14.CrossRefGoogle Scholar
  20. 20.
    Xiao Y, Liu H, Ding X, Chen Y, Jiang J, Zhang W. Influence of particle breakage on critical state line of rockfill material. Int J Geomech. 2016;16(1):04015031.CrossRefGoogle Scholar
  21. 21.
    Nader F, Silvani C, Djeran-Maigre I. Grain breakage under uniaxial compression using a three-dimensional discrete element method. Granul Matter. 2017;19(3):53.CrossRefGoogle Scholar
  22. 22.
    Russell AR, Khalili N. A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J. 2004;41(6):1179–92.CrossRefGoogle Scholar
  23. 23.
    Xiao Y, Sun Y, Liu H, Yin F. Critical state behaviors of a coarse granular soil under generalized stress conditions. Granul Matter. 2016;18(2):17.CrossRefGoogle Scholar
  24. 24.
    Been K, Jefferies MG. A state parameter for sands. Géotechnique. 1985;35(2):99–112.CrossRefGoogle Scholar
  25. 25.
    Wang ZL, Dafalias YF, Li XS, Makdisi FI. State pressure index for modeling sand behavior. J Geotech Geoenviron Eng. 2002;128(6):511–9.CrossRefGoogle Scholar
  26. 26.
    Coop MR, Sorensen KK, Bodas FT. Particle breakage during shearing of a carbonate sand. Géotechnique. 2004;54(3):157–63.CrossRefGoogle Scholar
  27. 27.
    McDowell GR, Bolton MD, Robertson D. The fractal crushing of granular materials. J Mech Phys Solids. 1996;44(12):2079–102.CrossRefGoogle Scholar
  28. 28.
    Einav I. Breakage mechanics—part I: theory. J Mech Phys Solids. 2007;55(6):1274–97.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Carrera A, Coop M, Lancellotta R. Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique. 2011;61(11):935–46.CrossRefGoogle Scholar
  30. 30.
    Indraratna B, Nimbalkar S, Coop M, Sloan SW. A constitutive model for coal-fouled ballast capturing the effects of particle degradation. Comput Geotech. 2014;61(9):96–107.CrossRefGoogle Scholar
  31. 31.
    Xiao Y, Liu HL, Chen Y, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure. J Geotech Geoenviron Eng. 2014;140(12):04014070.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2019

Authors and Affiliations

  1. 1.Geotechnical Engineering DepartmentNanjing Hydraulic Research InstituteNanjingChina

Personalised recommendations