Acta Mechanica Solida Sinica

, Volume 32, Issue 1, pp 120–132 | Cite as

Bifurcation and Chaos of Piezoelectric Shell Reinforced with BNNTs Under Electro-Thermo-Mechanical Loadings

  • Jinhua YangEmail author
  • Tao Zhou


By employing the nonlinear von Kármán shell theory and the theory of piezoelectricity including thermal effects, the constitutive relations of the BNNT-reinforced piezoelectric shell are built. Recurring to the ‘XY’ rectangle model, the material constants are reckoned. Then, the nonlinear governing equations of the structure are derived through the Reissner variational principle and solved by the fourth-order Runge–Kutta method. In numerical calculations, the effects of temperature, voltage, volume fraction, etc., on the bifurcation and chaos of piezoelectric shell reinforced with BNNTs are discussed in detail.


Bifurcation and chaos Piezoelectric shell BNNTs Reissner variational principle Runge–Kutta method 



The authors wish to acknowledge with great appreciation for the supports from National Natural Science Foundation of China (Project No. 51822803).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    An F, Chen F. Bifurcations and chaos of the nonlinear viscoelastic plates subjected to subsonic flow and external loads. Chaos Solitons Fractals. 2016;91:78–85.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Yiming F, Wang J, Mao Y. Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Appl Math Model. 2012;36(9):4324–40.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Yiqi M, Yiming F. Nonlinear dynamic response and active vibration control for piezoelectric functionally graded plate. J Sound Vib. 2010;329(11):2015–28.Google Scholar
  4. 4.
    Selim BA, Zhang LW, Liew KM. Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos Struct. 2017;163:350–64.Google Scholar
  5. 5.
    Fakhari V, Ohadi A, Yousefian P. Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment. Compos Struct. 2011;93(9):2310–21.zbMATHGoogle Scholar
  6. 6.
    Detroux T, Renson L, Masset L, Kerschen G. The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput Methods Appl Mech Eng. 2015;296:18–38.MathSciNetGoogle Scholar
  7. 7.
    Behjat B, Khoshravan MR. Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates. Compos Struct. 2012;94(3):874–82.Google Scholar
  8. 8.
    Li C, Liu JJ, Cheng M, Fan XL. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos B Eng. 2017;116:153–69.Google Scholar
  9. 9.
    Larbi W, Deü J-F, Ohayon R. Finite element formulation of smart piezoelectric composite plates coupled with acoustic fluid. Compos Struct. 2012;94(2):501–9.Google Scholar
  10. 10.
    Liu D, Yong X, Junlin L. Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energy harvester system with fractional-order physical properties. J Sound Vib. 2017;399:182–96.Google Scholar
  11. 11.
    Padmanav Dash BN, Singh BN. Nonlinear free vibration of piezoelectric laminated composite plate. Finite Elements Anal Des. 2009;45(10):686–94.Google Scholar
  12. 12.
    Song ZG, Zhang LW, Liew KM. Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. Compos Struct. 2016;158:92–100.Google Scholar
  13. 13.
    Selim BA, Zhang LW, Liew KM. Active vibration control of FGM plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos Struct. 2016;155(1):118–34.Google Scholar
  14. 14.
    Zhang HY, Shen YP. Vibration suppression of laminated plates with 1–3 piezoelectric fiber-reinforced composite layers equipped with interdigitated electrodes. Compos Struct. 2007;79(2):220–8.Google Scholar
  15. 15.
    Zhang LW, Song ZG, Qiao P, Liew KM. Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Comput Methods Appl Mech Eng. 2017;313:889–903.MathSciNetGoogle Scholar
  16. 16.
    Krysko VA, Awrejcewicz J, Kutepov IE, Zagniboroda NA, Papkova IV, Serebryakov AV, Krysko AV. Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena. Phys Lett A. 2013;377:2058–61.MathSciNetGoogle Scholar
  17. 17.
    Mohammadzadeh-Keleshteri M, Asadi H, Aghdam MM. Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers. Compos Struct. 2017;171:100–12.Google Scholar
  18. 18.
    Saviz MR, Mohammadpourfard M. Dynamic analysis of a laminated cylindrical shell with piezoelectric layers under dynamic loads. Finite Elements Anal Des. 2010;46:770–81.MathSciNetGoogle Scholar
  19. 19.
    Rafiee M, Yang J, Kitipornchai S. Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct. 2013;96:716–25.Google Scholar
  20. 20.
    Ying ZG, Zhu XQ. Response analysis of piezoelectric shells in plane strain under random excitations. Acta Mechanica Solida Sinica. 2009;22:152–60.Google Scholar
  21. 21.
    Rezaee M, Jahangiri R. Nonlinear and chaotic vibration and stability analysis of an aero- elastic piezoelectric FG plate under parametric and primary excitations. J Sound Vib. 2015;344(26):277–96.Google Scholar
  22. 22.
    Mosallaie Barzoki AA, Ghorbanpour Arani A, Kolahchi R, Mozdianfard MR. Electro–thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core. Appl Math Model. 2012;36:2977–89.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mosallaie Barzoki AA, Ghorbanpour Arani A, Kolahchi R, Mozdianfard MR, Loghman A. Nonlinear buckling response of embedded piezoelectric cylindrical shell reinforced with BNNT under electro–thermo- mechanical loadings using HDQM. Compos B Eng. 2013;44(1):722–7.Google Scholar
  24. 24.
    Ghorbanpour Arani A, Amir S, Shajari AR, Mozdianfard MR. Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory. Compos B Eng. 2012;43:195–203.Google Scholar
  25. 25.
    Mercan K, Civalek Ö. DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos Struct. 2016;143(20):300–9.Google Scholar
  26. 26.
    Ghorbanpour Arani A, Shajari AR, Amir S, Loghman A. Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT conveying fluid. Phys E Low-dimens Syst Nanostruct. 2012;45:109–21.Google Scholar
  27. 27.
    Ghorbanpour Arani A, Shajari AR, Atabakhshian V, Amir S, Loghman A. Nonlinear dynamical response of embedded fluid-conveyed micro-tube reinforced by BNNTs. Compos B Eng. 2013;44(1):424–32.Google Scholar
  28. 28.
    Ghorbanpour Arani A, Roudbari MA, Amir S. Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle. Phys B Condens Matter. 2012;407(17):3646–53.Google Scholar
  29. 29.
    Ansari R, Norouzzadeh A, Gholami R, Faghih M, Shojaei M, Hosseinzadeh M. Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment. Phys E Low-dimens Syst Nanostruct. 2014;61:148–57.Google Scholar
  30. 30.
    Yang JH, Yang J, Kitipornchai S. Nonlinear dynamic response of electro-thermo- mechanically loaded piezoelectric cylindrical shell reinforced with BNNTs. Smart Mater Struct. 2012;21(12):1–11.Google Scholar
  31. 31.
    Sai N, Mele EJ. Microscopic theory for nanotube piezoelectricity. Phys Rev B. 2003;68:1405.Google Scholar
  32. 32.
    Tan P, Tong L. Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials. Compos Sci Technol. 2001;61:759–69.Google Scholar
  33. 33.
    Fu YM. Nonlinear dynamic analysis of structures. Guang Zhou: Jinan University Press; 1997 (in Chinese).Google Scholar
  34. 34.
    Fu YM, Wang XQ. Analysis of bifurcation and chaos of the piezoelectric plate including damage effects. Int J Nonlinear Sci Numer Simul. 2008;9(1):61–74.zbMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2018

Authors and Affiliations

  1. 1.School of Civil EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations