Advertisement

A Three-Dimensional Size-Dependent Layered Model for Simply-Supported and Functionally Graded Magnetoelectroelastic Plates

  • Junhong Guo
  • Jiangyi Chen
  • Ernian Pan
Article
  • 82 Downloads

Abstract

A three-dimensional size-dependent layered model for simply-supported and functionally graded magnetoelectroelastic plates is presented based on the modified couple-stress theory. The functionally graded material is assumed to be exponential in the thickness direction of the plate. The final governing equations are reduced to an eigensystem by expressing the extended displacements in terms of two-dimensional Fourier series. Using the propagator matrix method, the exact solutions of the magnetic, electric and mechanical fields of sandwich nanoplates with couple-stress effect and under the surface loads are derived. Numerical examples for two functionally graded sandwich plates made of piezoelectric \(\hbox {BaTiO}_{{3}}\) and magnetostrictive \(\hbox {CoFe}_{{2}}\hbox {O}_{{4}}\) materials are presented to demonstrate the effect of the functional gradient factor and material length-scale parameter on the induced fields. The exact solutions presented in this work can also serve as benchmarks to various numerical methods for analyzing the size-dependent features in layered systems.

Keywords

Functionally graded Magnetoelectroelastic Modified couple stress Layered plate Three-dimensional solution 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11262012, 11502123, 11172273) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2015JQ01).

References

  1. 1.
    Zheng H, Wang J, Lofland SE, et al. Multiferroic \(\text{ BaTiO }_{{3}}\)-\(\text{ CoFe }_{{2}} \text{ O }_{{4}}\) nanostructures. Science. 2004;303:661–3.CrossRefGoogle Scholar
  2. 2.
    Hu JM, Nan T, Sun NX, Chen LQ. Multiferroic magnetoelectric nanostructures for novel device applications. MRS Bull. 2015;40:728–35.CrossRefGoogle Scholar
  3. 3.
    Shetty S, Palkar VR, Pinto R, Pramana A. Size effect study in magnetoelectric \(\text{ BiFeO }_{{3}}\) system. Pramana J Phys. 2002;58:1027–30.CrossRefGoogle Scholar
  4. 4.
    Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh A, Wong SS. Size-dependent magnetic properties of single-crystalline multiferroic \(\text{ BiFeO }_{{3}}\) nanoparticles. Nano Lett. 2007;7:766–72.CrossRefGoogle Scholar
  5. 5.
    Jaiswal A, Das R, Vivekanand K, Abraham PM, Adyanthaya S, Poddar P. Effect of reduced particle size on the magnetic properties of chemically synthesized \(\text{ BiFeO }_{{3}}\) nanocrystals. J Phys Chem C. 2010;114:2108–15.CrossRefGoogle Scholar
  6. 6.
    Toupin RA. Elastic materials with couple stresses. Arch Ration Mech Anal. 1962;11:385–414.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mindlin RD, Tiersten HF. Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal. 1962;11:415–48.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Eringen AC. Nonlocal continuum field theories. New York: Springer; 2002.zbMATHGoogle Scholar
  9. 9.
    Aifantis EC. Strain gradient interpretation of size effects. Int J Fract. 1999;95:299–314.CrossRefGoogle Scholar
  10. 10.
    Yang F, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39:2731–43.CrossRefGoogle Scholar
  11. 11.
    Park SK, Gao XL. Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z Angew Math Phys. 2008;59:904–17.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eringen AC. Continuum theory of micromorphic electromagnetic thermoelastic solids. Int J Eng Sci. 2003;41:653–65.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Alaimo A, Bruno M, Milazzo A, Orlando C. Nonlocal model for a magnetoelectro-elastic nanoplate. AIP Conf Proc. 2013;1558:1208–11.CrossRefGoogle Scholar
  14. 14.
    Ke LL, Wang YS. Free vibration of size-dependent magneto–electro-elastic nanobeams based on the nonlocal theory. Phys E. 2014;63:52–61.CrossRefGoogle Scholar
  15. 15.
    Ke LL, Wang YS, Yang J, Kitipornchai S. Free vibration of size-dependent magneto–electro-elastic nanoplates based on the nonlocal theory. Acta Mech Sin. 2014;30:516–25.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li YS, Ma P, Wang W. Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory. J Intell Mater Syst Struct. 2015;27:1–11.Google Scholar
  17. 17.
    Farajpour A, Hairi Yazdi MR, Rastgoo A, Loghmani M, Mohammadi M. Nonlocal nonlinear plate model for large amplitude vibration of magneto–electro-elastic nanoplates. Compos Struct. 2016;140:323–36.CrossRefGoogle Scholar
  18. 18.
    Askari AR, Tahani M. Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. Appl Math Model. 2015;39:934–46.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang YG, Lin WH, Liu N. Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl Math Model. 2015;39:117–27.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Roquea CMC, Ferreira AJM, Reddy JN. Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl Math Model. 2013;37:4626–33.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Guo JH, Chen JY, Pan E. Analytical three-dimensional solutions of anisotropic multilayered composite plates with modified couple-stress effect. Compos Struct. 2016;153:321–31.CrossRefGoogle Scholar
  22. 22.
    Koizumi M. FGM activities in Japan: use of composites multi-phased and functionally graded materials. Compos Part B Eng. 1997;28:1–4.CrossRefGoogle Scholar
  23. 23.
    Witvrouw A, Mehta A. The use of functionally graded poly-SiGe layers for MEMS applications. Mater Sci Forum. 2005;8:255–60.CrossRefGoogle Scholar
  24. 24.
    Wang YZ, Kuna M. Screw dislocation in functionally graded magnetoelectroelastic solids. Philos Mag Lett. 2014;94:72–9.CrossRefGoogle Scholar
  25. 25.
    Wang YZ, Kuna M. Time-harmonic dynamic Green’s functions for two-dimensional functionally graded magnetoelectroelastic materials. J Appl Phys. 2014;115:043518.CrossRefGoogle Scholar
  26. 26.
    Pan E. Exact solution for simply supported and multilayered magneto–electro-elastic plates. ASME J Appl Mech. 2001;68:608–18.CrossRefGoogle Scholar
  27. 27.
    Wang JG, Chen LF, Fang SS. State vector approach to analysis of multilayered magneto–electro-elastic plates. Int J Solids Struct. 2003;40:1669–80.CrossRefGoogle Scholar
  28. 28.
    Pan E, Han F. Exact solution for functionally graded and layered magneto–electro-elastic plates. Int J Eng Sci. 2005;43:321–39.CrossRefGoogle Scholar
  29. 29.
    Bhangale RK, Ganesan N. Static analysis of simply supported functionally graded and layered magneto–electro-elastic plates. Int J Solids Struct. 2006;43:3230–53.CrossRefGoogle Scholar
  30. 30.
    Fu Y, Du H, Huang W, Zhang S, Hu M. TiNi-based thin films in MEMS applications: a review. Sens Actuators A. 2004;112:395–408.CrossRefGoogle Scholar
  31. 31.
    Rahaeifard M, Kahrobaiyan MH, Ahmadian MT. Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: 3rd international conference on micro- and nanosystems DETC 2009-86254; 2009.Google Scholar
  32. 32.
    Reddy JN. Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids. 2011;59:2382–99.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ke LL, Wang YS. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos Struct. 2011;93:342–50.CrossRefGoogle Scholar
  34. 34.
    Nateghi A, Salamat-talab M, Rezapour J, Daneshian B. Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. Appl Math Model. 2012;36:4971–87.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Shafiei N, Kazemi M, Ghadiri M. On size-dependent vibration of rotary axially functionally graded microbeam. Int J Eng Sci. 2016;101:29–44.CrossRefGoogle Scholar
  36. 36.
    Fang JS, Gu JP, Wang HW. Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory. Int J Mech Sci. 2018;136:188–99.CrossRefGoogle Scholar
  37. 37.
    Thai HT, Thuc PV. A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos Struct. 2013;96:376–83.CrossRefGoogle Scholar
  38. 38.
    Li YS, Pan E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int J Eng Sci. 2015;97:40–59.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Jung WY, Han SC. Static and eigenvalue problems of Sigmoid functionally graded materials (S-FGM) micro-scale plates using the modified couple stress theory. Appl Math Model. 2015;39:3506–24.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Salehipour H, Nahvi H, Shahidi AR. Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories. Compos Struct. 2015;124:283–91.CrossRefGoogle Scholar
  41. 41.
    Taati E. Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates. Int J Eng Sci. 2016;100:45–60.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Guo JH, Chen JY, Pan E. Size-dependent behavior of functionally graded anisotropic composite plates. Int J Eng Sci. 2016;106:110–24.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Salehipour H, Nahvi H, Shahidi A, Mirdamadi HR. 3D elasticity analytical solution for bending of FG micro/nanoplates resting on elastic foundation using modified couple stress theory. Appl Math Model. 2017;47:174–88.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M. Nonlinear oscillations of functionally graded microplates. Int J Eng Sci. 2018;122:56–72.CrossRefGoogle Scholar
  45. 45.
    Thanh C, Phung-Van P, Thai CH, Nguyen-Xuan H, Wahab MA. Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory. Compos Struct. 2018;184:633–49.CrossRefGoogle Scholar
  46. 46.
    Park SK, Gao XL. Micromechanical modeling of honeycomb structures based on a modified couple stress theory. Mech Adv Mater Struct. 2008;15:574–93.CrossRefGoogle Scholar
  47. 47.
    Koiter WT. Couple stresses in the theory of elasticity, I and II. Proc K Ned Akad Wet (B). 1964;67:17–44.MathSciNetzbMATHGoogle Scholar
  48. 48.
    Xue CX, Pan E. On the longitudinal wave along a functionally graded magneto–electro-elastic rod. Int J Eng Sci. 2013;62:48–55.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics 2018

Authors and Affiliations

  1. 1.Department of MechanicsInner Mongolia University of TechnologyHohhotChina
  2. 2.School of Mechanical EngineeringZhengzhou UniversityZhengzhouChina
  3. 3.Department of Civil Engineering and Department of MathematicsThe University of AkronAkronUSA

Personalised recommendations