Eco-friendly Method for the Determination of Polycyclic Aromatic Hydrocarbons in Sediments by HS-SPME-GC/MS

  • Fausto Moreira AraujoEmail author
  • Gustavo Chevitarese Azevedo
  • Fernanda da Silva Nogueira
  • Renato Camargo Matos
  • Maria Auxiliadora Costa Matos


This paper aimed to optimize a method for extraction of 26 polycyclic aromatic hydrocarbons (PAHs), which are petroleum markers, and their derivatives in surface sediment samples. The gas chromatography coupled to mass spectrometry detection with automated headspace solid phase microextraction (HS-SPME-GC/MS) was used in the studies. Extraction temperature, extraction time, stirring, sample mass, the volume of saline solution and sorption time were the factors optimized applying 24 complete factorial and 23 rotational central composed designs. The linear range of the calibration curve for each PAH was from 10 to 40 ng g−1 and the Pearson correlations for all the compounds were above 0.98. The detection and quantification limits values ranged from 0.13 to 0.46 ng g−1 dry weight and 0.42 to 1.52 ng g−1 dry weight, respectively. The mean recoveries of the spiked samples ranged from 74 ± 16% (acenaphthylene) to 98 ± 5% (fluoranthene) and 84 ± 8% (retene) to 119 ± 6% (9-methylanthracene) for the spiked blanks. Sediment samples show the concentration of PAHs ranged from 0.55 ± 0.04 (naphthalene) to 17.4 ± 0.5 (pyrene) ng g−1 based upon the dry weight.

Graphic abstract


Headspace SPME Experimental design Sediment PAHs 



The authors are grateful for the financial support from Brazilian Foundations CAPES, CNPq, and State Foundation FAPEMIG. This research was supported by FAPEMIG (Research Support Foundation of the State of Minas Gerais) (process: APQ-00197-18), CNPq (National Council for Scientific and Technological Development), CAPES (Coordination for the Improvement of Higher Education Personnel) and PROPESQ/UFJF.

Compliance with Ethical Standards

The authors confirm that there are no known conflicts of interest associated with this publication and this article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10337_2019_3825_MOESM1_ESM.pdf (473 kb)
Supplementary material 1 (PDF 410 kb)


  1. 1.
    Werres F, Balsaa P, Schmidt TC (2009) Total concentration analysis of polycylic aromatic hydrocarbons in aqueous samples with high suspended particulate matter content. J Chromatogr A 1216:2235–2240. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Li J, Dong H, Zhang D et al (2015) Sources and ecological risk assessment of PAHs in surface sediments from Bohai Sea and northern part of the Yellow Sea, China. Mar Pollut Bull 96:485–490. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cao Z, Wang Y, Ma Y et al (2005) Occurrence and distribution of polycyclic aromatic hydrocarbons in reclaimed water and surface water of Tianjin, China. J Hazard Mater 122:51–59. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Huang S, He S, Xu H et al (2015) Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique. Environ Pollut 200:149–158. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Li GL, Lang YH, Gao MS et al (2014) Carcinogenic and mutagenic potencies for different PAHs sources in coastal sediments of Shandong Peninsula. Mar Pollut Bull 84:418–423. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    USEPA (2003) Priority Pollutants. In: Code Fed. Regul. (CFR).Title 40. Chapter I.Part 423 Append. A to Part 423. Accessed 29 Aug 2018
  7. 7.
    Santos MDR, Cerqueira MRF, de Oliveira MAL et al (2014) Box-Behnken design applied to ultrasound-assisted extraction for the determination of polycyclic aromatic hydrocarbons in river sediments by gas chromatography/mass spectrometry. Anal Methods 6:1650. CrossRefGoogle Scholar
  8. 8.
    Net S, Dumoulin D, El-Osmani R et al (2014) Experimental design approach to the optimisation of hydrocarbons extraction from the sediment: method development and application. Appl Geochem 40:126–134. CrossRefGoogle Scholar
  9. 9.
    Sampei Y, Uraoka S, Ono T, Dettman DL (2019) Estuarine, Coastal and Shelf Science Polycyclic aromatic hydrocarbons (PAHs) in sediment cores from lakes Shinji and Nakaumi, SW Japan : a proxy of recent fi re events in the watershed. Estuar Coast Shelf Sci 226:106269. CrossRefGoogle Scholar
  10. 10.
    Chen F, Lin Y, Cai M et al (2018) Occurrence and risk assessment of PAHs in surface sediments from Western Arctic and Subarctic Oceans. Int J Environ Res Public Health. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yazdanfar N, Shamsipur M, Ghambarian M, Esrafili A (2018) A highly sensitive dispersive microextraction method with magnetic carbon nanocomposites coupled with dispersive liquid-liquid microextraction and two miscible stripping solvents followed by GC–MS for quantification of 16 PAHs in environmental samples. Chromatographia 81:487–499. CrossRefGoogle Scholar
  12. 12.
    Ontiveros-Cuadras JF, Ruiz-Fernández AC, Sanchez-Cabeza JA et al (2019) Recent history of persistent organic pollutants (PAHs, PCBs, PBDEs) in sediments from a large tropical lake. J Hazard Mater 368:264–273. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    IARC (1999) IARC monographs on the evaluation of carcinogenic risks to humans. Re-eval Some Org Chem Hydrazine Hydrog Peroxide 71:319–335Google Scholar
  14. 14.
    Araujo FM, Santos MDR, de Oliveira MAL et al (2017) Box-Behnken design applied to optimize the ultrasound-assisted extraction of petroleum biomarkers in river sediment samples using green analytical chemistry. Anal Methods 9:5859–5867. CrossRefGoogle Scholar
  15. 15.
    Poli D, Manini P, Andreoli R et al (2005) Determination of dichloromethane, trichloroethylene and perchloroethylene in urine samples by headspace solid phase microextraction gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 820:95–102. CrossRefGoogle Scholar
  16. 16.
    Arrebola FJ, Frenich AG, González Rodríguez MJ et al (2006) Determination of polycyclic aromatic hydrocarbons in olive oil by a completely automated headspace technique coupled to gas chromatography-mass spectrometry. J Mass Spectrom 41:822–829. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ishizaki A, Saito K, Hanioka N et al (2010) Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. J Chromatogr A 1217:5555–5563. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pawliszyn J (2012) Development of SPME devices and coatingsGoogle Scholar
  19. 19.
    Arthur LC, Pawliszyn J (1990) Solid Phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. CrossRefGoogle Scholar
  20. 20.
    LANÇAS, F. M (2004) Extração em Fase Sólida (SPE), 4o. RiMaGoogle Scholar
  21. 21.
    Afshar Mogaddam MR, Mohebbi A, Pazhohan A et al (2019) Headspace mode of liquid phase microextraction: a review. TrAC—Trends Anal Chem 110:8–14. CrossRefGoogle Scholar
  22. 22.
    Valente ALP, Augusto F (2000) MICROEXTRAÇÃO POR FASE SÓLIDA. Quim Nova 23:523CrossRefGoogle Scholar
  23. 23.
    Vas G, Vékey K (2004) Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J Mass Spectrom 39:233–254. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Feng J, Sun M, Wang X et al (2018) Barium sulfate nanoparticles as a coating for solid-phase microextraction of polycyclic aromatic hydrocarbons in aqueous samples. Chromatographia 81:1287–1292. CrossRefGoogle Scholar
  25. 25.
    Tian Y, Sun M, Wang X et al (2018) A nanospherical metal-organic framework UiO-66 for solid-phase microextraction of polycyclic aromatic hydrocarbons. Chromatographia 81:1053–1061. CrossRefGoogle Scholar
  26. 26.
    Ghiasvand AR, Hosseinzadeh S, Pawliszyn J (2006) New cold-fiber headspace solid-phase microextraction device for quantitative extraction of polycyclic aromatic hydrocarbons in sediment. J Chromatogr A 1124:35–42. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu S, Shuai Q, Pawliszyn J (2016) Determination of polycyclic aromatic hydrocarbons in sediment by pressure-balanced cold fiber solid phase microextraction. Anal Chem 88:8936–8941. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yiantzi E, Kalogerakis N, Psillakis E (2015) Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples. Anal Chim Acta 890:108–116. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal Chem 50:78–84. CrossRefGoogle Scholar
  30. 30.
    Sun F, Littlejohn D, David Gibson M (1998) Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection. Anal Chim Acta 364:1–11. CrossRefGoogle Scholar
  31. 31.
    BARROS NETO B., SCARMINIO IS., BRUNS RE (2001) Como fazer experimentos: Pesquisa e desenvolvimento na ciência e na indústriaGoogle Scholar
  32. 32.
    Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem 74:835–855. CrossRefGoogle Scholar
  33. 33.
    Ribani M, Grespan Bottoli CB, Collins CH et al (2004) VALIDAÇÃO EM MÉTODOS CROMATOGRÁFICOS E ELETROFORÉTICOS. Quim Nova 27:771–780. CrossRefGoogle Scholar
  34. 34.
    Grob RoL, Barry EF (2004) Modern practice of gas chromatography modern practice of gas chromatographyGoogle Scholar
  35. 35.
    Boyer KW, Horwitz W, Albert R (1985) Interlaboratory variability in trace element analysis. Anal Chem 57:454–459. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    De Luca G, Furesi A, Micera G et al (2005) Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Mar Pollut Bull 50:1223–1232. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Heemken OP, Stachel B, Theobald N, Wenclawiak BW (2000) Temporal variability of organic micropollutants in suspended particulate matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Arch Environ Contam Toxicol 38:11–31. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Figueira RCL, Lourenço RA, Bícego MC et al (2009) Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environ Pollut 158:192–200. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Torres FTP (2006) Relações entre fatores climáticos e ocorrências de incêndios florestais na cidade de Juiz de Fora (MG). Caminhos Geogr 7:162–171Google Scholar
  40. 40.
    Nagy AS, Simon G, Szabó J, Vass I (2013) Polycyclic aromatic hydrocarbons in surface water and bed sediments of the Hungarian upper section of the Danube River. Environ Monit Assess 185:4619–4631. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations