Review of Ionic Liquids in Microextraction Analysis of Pesticide Residues in Fruit and Vegetable Samples

  • Lukman Bola Abdulra’ufEmail author
  • Abubakar Lawal
  • Ala’ Yahya Sirhan
  • Guan Huat Tan


The objective of this work is to provide a critical review of the use of ionic liquids in the microextraction of pesticide residues in fruits and vegetables. It includes an assessment of the advantages and limitations of current applications of ionic liquids in microextraction techniques. The review also aims to illustrate the impact of ionic liquids on the development of novel sorbent materials for analytical applications. The unique physicochemical properties of ionic liquids make them ideal sorbents in separation techniques. Their number of applications in analytical separation has increased considerably over the past 5 years. Therefore, this review focuses on the synthesis, purification, functionalization, and application of ionic liquids for pesticide residue analysis in fruits and vegetables with different sample preparation procedures, covering articles published in the literature since their first application in 2009.


Microextraction techniques Ionic liquids Pesticide residues Fruits and vegetables 



No funding was received.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Pyrzynska K (2013) Use of nanomaterials in sample preparation. TrAC Trends Anal Chem 43:100–108. CrossRefGoogle Scholar
  2. 2.
    Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR (1992) Automation and optimization of solid-phase microextraction. Anal Chem 64:1960–1966. CrossRefGoogle Scholar
  3. 3.
    Abdel-Rehim M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701(2):119–128. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Altun Z, Abdel-Rehim M (2008) Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 630(2):116–123. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Abdulra’uf LB, Sirhan AY, Tan GH (2012) Recent developments and applications of liquid phase microextraction in fruits and vegetables analysis. J Sep Sci 35(24):3540–3553. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abdulra’uf LB, Tan GH (2014) Review of SBSE technique for the analysis of pesticide residues in fruits and vegetables. Chromatogr 77(1–2):15–24. CrossRefGoogle Scholar
  7. 7.
    Liu H, Dasgupta PK (1996) Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem 68(11):1817–1821. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu H, Dasgupta PK (1996) A liquid drop: a windowless optical cell and a reactor without walls for flow injection analysis. Anal Chim Acta 326(1–3):13–22CrossRefGoogle Scholar
  9. 9.
    Jeannot MA, Przyjazny A, Kokosa JM (2010) Single drop microextraction—development, applications and future trends. J Chromatogr A 1217(16):2326–2336. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid-liquid microextraction method. J Chromatogr A 1217(16):2342–2357. CrossRefPubMedGoogle Scholar
  11. 11.
    Pedersen-Bjergaard S, Rasmussen KE, Grønhaug Halvorsen T (2000) Liquid–liquid extraction procedures for sample enrichment in capillary zone electrophoresis. J Chromatogr A 902(1):91–105. CrossRefPubMedGoogle Scholar
  12. 12.
    Pezo D, Salafranca J, Nerín C (2007) Development of an automatic multiple dynamic hollow fibre liquid-phase microextraction procedure for specific migration analysis of new active food packagings containing essential oils. J Chromatogr A 1174(1–2):85–94. CrossRefPubMedGoogle Scholar
  13. 13.
    Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation—a review. Anal Bioanal Chem 373(1–2):3–22. CrossRefPubMedGoogle Scholar
  14. 14.
    Kokosa JM (2013) Advances in solvent-microextraction techniques. TrAC Trends Anal Chem 43:2–13CrossRefGoogle Scholar
  15. 15.
    Tan GH, Chai MK (2016) Evaluation of different Sample extraction techniques of pesticides residue analysis in food by GC-MS/MS and LC-MS/MS techniques. Int J Agric Life Sci 2(2):18–37Google Scholar
  16. 16.
    Pawliszyn J, Pawliszyn B, Pawliszyn M (1997) Solid phase microextarction (SPME). Chem Educ 2(4):1–7CrossRefGoogle Scholar
  17. 17.
    Zhang B-T, Zheng X, Li H-F, Lin J-M (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G (2013) Application of nanomaterials in sample preparation. J Chromatogr A 1300:2–16. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kissoudi M, Samanidou V (2018) Recent advances in applications of ionic liquids in miniaturized microextraction techniques. Molecules 23:6. CrossRefGoogle Scholar
  20. 20.
    Wen Y, Chen L, Li J, Liu D, Chen L (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal Chem 59:26–41. CrossRefGoogle Scholar
  21. 21.
    Zaijun L, Xiulan S, Junkang L (2011) Ionic liquid as novel solvent for extraction and separation in analytical chemistry. In: Kokorin A (ed) Ionic Liquids: applications and perspectives. InTech, Rijeka, Croatia, pp 153–180Google Scholar
  22. 22.
    Abdulra’uf LB, Tan GH (2016) Use of carbon nanotubes for the analysis of pesticide residues in fruits and vegetables. J AOAC Int 99(6):1415–1425. CrossRefGoogle Scholar
  23. 23.
    Ghaemi F, Amiri A, Yunus R (2014) Methods for coating solid-phase microextraction fibers with carbon nanotubes. TrAC Trends Anal Chem 59:133–143. CrossRefGoogle Scholar
  24. 24.
    Kataoka H (2002) Automated sample preparation using in-tube solid-phase microextraction and its application—a review. Anal Bioanal Chem 373:31–45. CrossRefPubMedGoogle Scholar
  25. 25.
    Lucena R, Cárdenas S (2017) Ionic liquids in sample preparation. Comprehens Anal Chem. CrossRefGoogle Scholar
  26. 26.
    Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396:339–364. CrossRefPubMedGoogle Scholar
  27. 27.
    Ghandi K (2014) A review of ionic liquids, their limits and applications. Green Sustainable Chem 4:44–53CrossRefGoogle Scholar
  28. 28.
    Wang H, Hu L, Li W, Yang X, Lu R, Zhang S, Zhou W, Gao H, Li J (2017) In-syringe dispersive liquid-liquid microextraction based on the solidification of ionic liquids for the determination of benzoylurea insecticides in water and tea beverage samples. Talanta 162:625–633. CrossRefPubMedGoogle Scholar
  29. 29.
    Anastas PT, Kirchhoff MM (2002) Origins, current status and future challenges of green chemistry. Acc Chem Res 35:686–694CrossRefGoogle Scholar
  30. 30.
    Deetlefs M, Seddon KR (2010) The green synthesis of ionic liquids. In: Wasserscheid P, Stark A (eds) Handbook of green chemistry, vol 6: ionic liquids. WILEY-VCH, WeinheimGoogle Scholar
  31. 31.
    Ebrahimi M, Es’haghi Z, Samadi F, Hosseini MS (2011) Ionic liquid mediated sol-gel sorbents for hollow fiber solid-phase microextraction of pesticide residues in water and hair samples. J Chromatogr A 1218(46):8313–8321. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Saraji M, Rezaei B, Boroujeni MK, Bidgoli AAH (2013) Polypyrrole/sol-gel composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples. J Chromatogr A 1279:20–26PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wan Ibrahim WA, Farhani H, Sanagi MM, Aboul-Enein HY (2010) Solid phase microextraction using new sol-gel hybrid polydimethylsiloxane-2-hydroxymethyl-18-crown-6-coated fiber for determination of organophosphorous pesticides. J Chromatogr A 1217(30):4890–4897. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Barahona F, Turiel E, Martín-Esteban A (2011) Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole. Anal Chim Acta 694(1–2):83–89PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gao L, Chen L, Li X (2014) Magnetic molecularly imprinted polymers based on carbon nanotubes for extraction of carbamates. Microchim Acta 182(3–4):781–787. CrossRefGoogle Scholar
  36. 36.
    Saraji M, Jafari MT, Mossaddegh M (2016) Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–corona discharge ion mobility spectrometric detection. J Chromatogr A 1429:30–39. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Song X-Y, Shi Y-P, Chen J (2013) Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples. Food Chem 139:246–252PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tan GH, Abdulra’uf LB (2012) Recent developments and applications of microextraction techniques for the analysis of pesticide residues in fruits and vegetables. In: Soundararajan RP (ed) Pesticides—recent trends in pesticide residue assay. InTech, Rijeka, pp 171–190. doi: 10.5772/3329Google Scholar
  39. 39.
    Han D, Row KY (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Flieger J, Grushka EB, Czajkowska-Żelazko A (2014) Ionic liquids as solvents in separation processes. Austin J Anal Pharm Chem 1(2):1–8Google Scholar
  41. 41.
    Joshi MD, Anderson JL (2012) Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv 2:5470–5484. CrossRefGoogle Scholar
  42. 42.
    Tunckol M, Durand J, Serp P (2012) Carbon nanomaterial—ionic liquid hybrids. Carbon 50(4):4303–4334CrossRefGoogle Scholar
  43. 43.
    Trujillo-Rodriguez MJ, Rocío-Bautista P, Pino V, Afonso AM (2013) Ionic liquids in dispersive liquid-liquid microextraction. TrAC Trends Anal Chem 51:87–106CrossRefGoogle Scholar
  44. 44.
    Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16PubMedCrossRefGoogle Scholar
  45. 45.
    Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2010) The roles of ionic liquids in sorptive microextraction techniques. TrAC Trends Anal Chem 29(7):602–616. CrossRefGoogle Scholar
  46. 46.
    Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217(16):2268–2286. CrossRefPubMedGoogle Scholar
  47. 47.
    Martín-Calero A, Pino V, Afonso AM (2011) Ionic liquids as a tool for determination of metals and organic compounds in food analysis. TrAC Trends Anal Chem 30(10):1598–1619. CrossRefGoogle Scholar
  48. 48.
    Amde M, Liu J-f, Pang L (2015) Environmental application, fate, effects and concerns of ionic liquids: a review. Environ Sci Technol 49(21):12611–12627PubMedCrossRefGoogle Scholar
  49. 49.
    Talavera-Prieto NMC, Ferreira AGM, Simões PN, Carvalho PJ, Mattedi S, Coutinho JAP (2014) Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids. J Chem Thermodyn 68:221–234CrossRefGoogle Scholar
  50. 50.
    Mai NL, Ahn K, Koo Y-M (2014) Methods for recovery of ionic liquids—a review. Process Biochem 49:872–881CrossRefGoogle Scholar
  51. 51.
    Delgado B, Pino V, Anderson JL, Ayala JH, Afonso AM, González V (2012) An in-situ extraction-preconcentration method using ionic liquid-based surfactants for the determination of organic contaminants contained in marine sediments. Talanta 99:972–983PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhao D, Liu M, Zhang J, Li J, Ren P (2013) Synthesis, characterization, and properties of imidazole dicationic ionic liquids and their application in esterification. Chem Engr J 221:99–104CrossRefGoogle Scholar
  53. 53.
    Luczak J, Paszkiewicz M, Krukowska A, Malankowska A, Zaleska-Medynska A (2016) Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role. Adv Colloid Interf Sci 230:13–28. CrossRefGoogle Scholar
  54. 54.
    Dietz ML (2006) Ionic Liquids as Extraction Solvents: Where do We Stand? Sep Sci Technol 41:2047–2063CrossRefGoogle Scholar
  55. 55.
    Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium-based ionic liquids. J Chem Soc Chem Commun 1992:965–967CrossRefGoogle Scholar
  56. 56.
    Escudero LB, Castro Grijalba A, Martinis EM, Wuilloud RG (2013) Anal Bioanal Chem 405:7597–7613PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zhang Y, Lee HK (2012) Anal Chim Acta 750:120–126PubMedCrossRefGoogle Scholar
  58. 58.
    Mohammadi A, Tavakoli R, Kamankesh M, Rashedi H, Attaran A, Delavar M (2013) Enzyme-assisted extraction and ionic liquid-based dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of patulin in apple juice and method optimization using central composite design. Anal Chim Acta 804:104–110PubMedCrossRefGoogle Scholar
  59. 59.
    Ho TD, Canestraro AJ, Anderson JL (2011) Ionic liquids in solid-phase microextraction: a review. Anal Chim Acta 695(1–2):18–43. CrossRefPubMedGoogle Scholar
  60. 60.
    Asensio-Ramos M, Hernandez-Borges J, Borges-Miquel TM, Rodriguez-Delgado MA (2011) Ionic liquid-dispersive liquid-liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection. J Chromatogr A 1218:4808–4816PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kabir A, Furton KG, Malik A (2013) Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal Chem 45:197–218. CrossRefGoogle Scholar
  62. 62.
    Martinis EM, Berton P, Wuilloud RG (2014) Ionic liquid-based microextraction techniques for trace-element analysis. TrAC Trends Anal Chem 60:54–70CrossRefGoogle Scholar
  63. 63.
    Wang L, Zhang D, Xu X, Zhang L (2016) Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging. Food Chem 197:754–760PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Yu H, Ho TD, Anderson JL (2013) Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. TrAC Trends Anal Chem 45:219–232CrossRefGoogle Scholar
  65. 65.
    Zhao R-S, Zhang L-L, Wang X (2011) Dispersive liquid-phase microextraction using ionic liquid as extractant for the enrichment and determination of DDT and its metabolites in environmental water samples. Anal Bioanal Chem 399:1287–1293PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gao Y, Zhou Q, Xie G, Yao Z (2012) Temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with HPLC with ultraviolet detector for the determination of fungicides. J Sep Sci 35:3569–3574PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zhou Q, Zhang X, Xie G (2011) Preconcentration and determimation of pyrethroid insecticides in water with ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography. Anal Methods 3:356–361CrossRefGoogle Scholar
  68. 68.
    Shu J, Li C, Liu M, Liu H, Feng X, Tan W, Liu F (2012) Role of counteranions in sol-gel-derived alkoxyl-functionalized ionic-liquid-based organic-inorganic hybrid coatings for SPME. Chromatography 75(23–24):1421–1433. CrossRefGoogle Scholar
  69. 69.
    Steltenpohl P, Graczová E (2014) Use of ionic liquids in extraction. Acta Chim Slov 7(2):129–133CrossRefGoogle Scholar
  70. 70.
    Xu J, Zheng J, Tian J, Zhu F, Zeng F, Su C, Ouyang G (2013) New materials in solid-phase microextraction. TrAC Trends Anal Chem 47:68–83. CrossRefGoogle Scholar
  71. 71.
    Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38(7):1009–1036. CrossRefGoogle Scholar
  72. 72.
    Sarafraz-Yazdi A, Vatani H (2013) A solid phase microextraction coating based on ionic liquid sol-gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector. J Chromatogr A 1300:104–111. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ribeiro C, Ribeiro AR, Maia AS, Goncalves VMF, Tiritan ME (2014) New trends in sample preparation techniques for environmental analysis. Crit Rev Anal Chem 44:142–185. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YC (2013) Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J Nat Prod 76(11):2162–2173PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Liu M, Zhou X, Chen Y, Liu H, Feng X, Qiu G, Liu F, Zeng Z (2010) Innovative chemically bonded ionic liquids-based sol-gel coatings as highly porous, stable and selective stationary phases for solid phase microextraction. Anal Chim Acta 683(1):96–106. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Shu J, Xie P, Lin D, Chen R, Wang J, Zhang B, Liu M, Liu H, Liu F (2014) Two highly stable and selective solid phase microextraction fibers coated with crown ether functionalized ionic liquids by different sol-gel reaction approaches. Anal Chim Acta 806:152–164. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128(41):13427–13434PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Nawala J, Dawidzuik B, Dziedzic D, Gordon D, Popiel S (2018) Applications of ionic liquids in analytical chemistry with a particular emphasis on their use in solid-phase microextraction. TrAC Trends Anal Chem 105:18–86. CrossRefGoogle Scholar
  79. 79.
    Mallakpour S, Dinari M (2012) Ionic liquids as green solvents: progress and prospects. In: Mohammad A, Inamuddin (eds) Green solvents II: properties and applications of ionic liquids. Springer, Dordrecht, pp 1-32Google Scholar
  80. 80.
    Messali M (2016) A facile and green microwave-assisted synthesis of new functionalized picolinium-based ionic liquids. Arab J Chem 9(S1):S564–S569. CrossRefGoogle Scholar
  81. 81.
    McIntosh AJS, Griffith J, Gräsvik J (2016) Methods of synthesis and purification of ionic liquids. In: Kuzmina O, Hallett JP (eds) Application, purification, and recovery of ionic liquids. Elsevier, Amsterdam, pp 59–99CrossRefGoogle Scholar
  82. 82.
    Messali M, Ahmed SA (2011) A green microwave-assisted synthesis of new pyridazinium-based ionic liquids as an environmentally friendly alternative. Green Sustain Chem 1:70–75. CrossRefGoogle Scholar
  83. 83.
    Messali M, Moussa Z, Alzahrani AY, El-Naggar MY, ElDouhaibi AS, Judeh ZMA, Hammouti B (2013) Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids. Chemosphere 91(11):1627–1634PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Wu W, Li W, Han B, Zhang Z, Jiang T, Liu Z (2005) A green and effective method to synthesize ionic liquids: supercritical CO2 route. Green Chem 7:701–704CrossRefGoogle Scholar
  85. 85.
    Imperato G, König B, Chiappe C (2007) Ionic green solvents from renewable resources. Eur J Org Chem 7:1049–1058CrossRefGoogle Scholar
  86. 86.
    Handy ST (2009) Greener solvents: room temperature ionic liquids from biorenewable sources. Chem Eur J 9:2938–2944. CrossRefGoogle Scholar
  87. 87.
    Yang YK, Xie XL, Cu W (2012) Functionalization of carbon nanotubes with ionic liquids. In: Mohammad A, Inamuddin (eds) Green solvents II: properties and applications of ionic liquids. Springer, Dordrecht, p 399CrossRefGoogle Scholar
  88. 88.
    Shearrow AM, Harris GA, Fang L, Sekhar PK, Nguyen LT, Turner EB, Bhansali S, Malik A (2009) Ionic liquid-mediated sol-gel coatings for capillary microextraction. J Chromatogr A 1216(29):5449–5458. CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhou X, Xie P-f, Wang J, Zhang B-b, Liu M-m, Liu H-l, Feng X-h (2011) Preparation and characterization of novel crown ether functionalized ionic liquid-based solid-phase microextraction coatings by sol-gel technology. J Chromatogr A 1218(23):3571–3580. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ma H, Wang L, Liu Z, Guo Y (2016) Ionic liquid–graphene hybrid nanosheets-based electrochemical sensor for sensitive detection of methyl parathion. Int J Environ Anal Chem 96(2):161–172. CrossRefGoogle Scholar
  91. 91.
    Pena-Pereira F, Namiesni J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem 7(7):1784–1800. CrossRefPubMedGoogle Scholar
  92. 92.
    Polo-Luque ML, Simonet BM, Valcárcel M (2013) Functionalization and dispersion of carbon nanotubes in ionic liquids. TrAC Trends Anal Chem 47:99–110. CrossRefGoogle Scholar
  93. 93.
    He Z, Alexandridis P (2017) Ionic liquid and nanoparticle hybrid systems: emerging applications. Adv Colloid Interf Sci 244:54–70. CrossRefGoogle Scholar
  94. 94.
    Casado N, Perez-Quintanilla D, Morante-Zarcero S, Sierra I (2017) Current development and applications of ordered mesoporous silicas and other sol–gel silica-based materials in food sample preparation for xenobiotics analysis. TrAC Trends Anal Chem 88:167–184. CrossRefGoogle Scholar
  95. 95.
    Bagheri M, Masteri-Farahani M, Ghorbani M (2013) Synthesis and characterization of heteropolytungstate-ionic liquid supported on the surface of silica coated magnetite nanoparticles. J Magn Magn Mater 327:58–63CrossRefGoogle Scholar
  96. 96.
    Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salt triggered by single-walled carbon nanotubes. Science 300:2072–2074PubMedCrossRefGoogle Scholar
  97. 97.
    Neouze M-A, Kronstein M, Tielens F (2014) Ionic nanoparticle networks: development and perspectives in the landscape of ionic liquid based materials. Chem Commun 50(75):10929–10936CrossRefGoogle Scholar
  98. 98.
    He Z, Alexandridis P (2015) Nanoparticles in Ionic Liquids: Interaction and organization. Phys Chem Chem Phys 17(28):18238–18261. CrossRefPubMedGoogle Scholar
  99. 99.
    Neouze M-A (2010) About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. J Mater Chem 20(43):9593–9607CrossRefGoogle Scholar
  100. 100.
    Vickackaite V, Padarauskas A (2012) Ionic liquids in microextraction techniques. Cent Eur J Chem 10(3):652–674Google Scholar
  101. 101.
    Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL (2016) Magnetic ionic liquids in analytical chemistry. Anal Chim Acta 934:9–21PubMedCrossRefGoogle Scholar
  102. 102.
    Wang HF, Zhu YZ, Lin JP, Yan XP (2008) Fabrication of molecularly imprinted hybrid monoliths via a room temperature ionic liquid-mediated nonhydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography. Electrophoresis 29(4):952–959PubMedCrossRefGoogle Scholar
  103. 103.
    Domanska U (2009) General review of ionic liquids and their properties. In: Koel M (ed) Ionic liquids in chemical analysis. Taylor and Francis, Boca Raton, pp 1–71Google Scholar
  104. 104.
    Clark KD, Emaus MN, Varona M, Bowers AN, Anderson JL (2018) Ionic liquids: solvents and sorbents in sample preparation. J Sep Sci 41(1):209–235. CrossRefPubMedGoogle Scholar
  105. 105.
    Zhang J, Gao H, Peng B, Li S, Zhou Z (2011) Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples. J Chromatogr A 1218(38):6621–6629. CrossRefPubMedGoogle Scholar
  106. 106.
    Peng B, Yang X, Zhang J, Du F, Zhou W, Gao H, Lu R (2013) Comparison of two ultrasound-enhanced microextractions combined with HPLC for determining acaricides in water. J Sep Sci 36:2196–2202PubMedCrossRefGoogle Scholar
  107. 107.
    Gao Z, Deng Y, Hu X, Yang S, Sun C, He H (2013) Determination of organophosphate esters in water samples using an ionic liquid-based sol-gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector. J Chromatogr A 1300:141–150. CrossRefPubMedGoogle Scholar
  108. 108.
    Gao X, Pan M, Fang G, Jing W, He S, Wang S (2013) An ionic liquid modified dummy molecularly imprinted polymer as a solid-phase extraction material for the simultaneous determination of nine organochlorine pesticides in environmental and food samples. Anal Methods 5(21):6128–6134. CrossRefGoogle Scholar
  109. 109.
    Feng J, Sun M, Bu Y, Luo C (2015) Facile modification of multi-walled carbon nanotubes–polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange. J Chromatogr A 1393:8–17. CrossRefPubMedGoogle Scholar
  110. 110.
    Hu L, Zhang P, Shan W, Wang X, Li S, Zhou W, Gao H (2015) In situ metathesis reaction combined with liquid-phase microextraction based on the solidification of sedimentary ionic liquids for the determination of pyrethroid insecticides in water samples. Talanta 144:98–104. CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Hassan J, Sarkouhi M (2016) Miniaturized counter current liquid–liquid extraction for organophosphorus pesticides determination. Arab J Chem 9:38–42CrossRefGoogle Scholar
  112. 112.
    Chen F, Song Z, Nie J, Yu G, Li Z, Lee M (2016) Ionic liquid-based carbon nanotube coated magnetic nanoparticles as adsorbent for the magnetic solid phase extraction of triazole fungicides from environmental water. RSC Adv 6:81877–81885CrossRefGoogle Scholar
  113. 113.
    Luo M, Liu D, Zhao L, Han J, Liang Y, Wang P, Zhou Z (2014) A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal Chim Acta 852:88–96PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Latifeh F, Yamini Y, Seidi S (2016) Ionic liquid-modified silica-coated magnetic nanoparticles: promising adsorbents for ultra-fast extraction of paraquat from aqueous solution. Environ Sci Pollut Res 23:4411–4421CrossRefGoogle Scholar
  115. 115.
    Yang L, Su P, Chen X, Zhang R, Yang Y (2015) Microwave-assisted synthesis of poly(ionic liquid)-coated magnetic nanoparticles for the extraction of sulfonylurea herbicides from soil for HPLC. Anal Methods 7:3246–3252CrossRefGoogle Scholar
  116. 116.
    Liu G, Su P, Yang L, Yang Y (2015) Preparation of novel ionic-liquid-modified magnetic nanoparticles by a microwave-assisted method for sulfonylurea herbicides extraction. J Sep Sci 38:3936–3944PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Zheng X, He L, Duan Y, Jiang X, Xiang G, Zhao W, Zhang S (2014) Poly(ionic liquid) immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drinks. J Chromatogr A 1358:39–45PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Yang M, Wu X, Jia Y, Xi X, Yang X, Lu R, Zhang S, Gao H, Zhou W (2016) Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Anal Chim Acta 906:118–127PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Wu X, Li X, Yang M, Zeng H, Zhanga S, Lu R, Gao H, Xu D (2017) An ionic liquid-based nanofluid of titanium dioxide nanoparticles for effervescence-assisted dispersive liquid–liquid extraction for acaricide detection. J Chromatogr A 1497:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Albishri HM, Aldawsari NAM, El-Hady DA (2016) Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with reversed-phase liquid chromatography for determination of organophosphorus pesticides in water samples. Electrophoresis 37(19):2462–2469. CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Padilla-Alonso DJ, Garza-Tapia M, Chávez-Montes A, González-Horta A, Waksman de Torresa NH, Castro-Ríos R (2017) New temperature-assisted ionic liquid-based dispersive liquid–liquid microextraction method for the determination of glyphosate and aminomethylphosphonic acid in water samples. J Liq Chromatogr Rel Techn 40(3):147–155CrossRefGoogle Scholar
  122. 122.
    Fan C, Liang Y, Dong H-G, Ding G, Zhang W, Tang G, Yang J, Kong D, Wang D, Cao Y (2017) In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples. Anal Chim Acta 975:20–29. CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Rykowska I, Ziemblińska J, Nowak I (2018) Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. J Mol Liq 259:319–339. CrossRefGoogle Scholar
  124. 124.
    Gure A, Lara FJ, García-Campaña AM, Megersa N, del Olmo-Iruela M (2015) Vortex-assisted ionic liquid dispersive liquid–liquid microextraction for the determination of sulfonylurea herbicides in wine samples by capillary high-performance liquid chromatography. Food Chem 170:348–353PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Tadesse B, Teju E, Gure A, Megersa N (2015) Ionic-liquid-based dispersive liquid–liquid microextraction combined with high-performance liquid chromatography for the determination of multiclass pesticide residues in water samples. J Sep Sci 38(5):829–835PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Chen X, Bian Y, Liu F, Teng P, Sun P (2017) Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid–liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea. J Chromatogr A 1518:1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Amde M, Tan ZQ, Liu R, Liu JF (2015) Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis. J Chromatogr A 1395:7–15PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Amiri A, Saadati-Moshtaghin HR, Zonoz FM (2018) A hybrid material composed of a polyoxometalate of type BeW12O40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography. Microchim Acta 185(3):176. CrossRefGoogle Scholar
  129. 129.
    Dong Y, Yang J, Liu X, Zhang L (2016) Ionic liquids-modified CaFe2O4/MWCNTs nano-hybrid as an electrode material for detection of carbendazim. J Electrochem Soc 163(13):B652–B658. CrossRefGoogle Scholar
  130. 130.
    Pang L, Pang R, Ge L, Zheng L, Zhao J, Zhang H (2016) Trace determination of organophosphate esters in environmental water samples with an ionogel-based nanoconfined ionic liquid fiber coating for solid-phase microextraction with gas chromatography and flame photometric detection. J Sep Sci 39(22):4415–4421. CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Pena-Pereira F, Marcinkowski L, Kloskowski K, Namieśnika J (2015) Ionogel fibres of bis(trifluoromethylsulfonyl)imide anion-based ionic liquids for the headspace solid-phase microextraction of chlorinated organic pollutants. Analyst 140(21):7417–7422. CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Galán-Cano F, Lucena R, Cárdenas S, Valcárcel M (2013) Dispersive micro-solid phase extraction with ionic liquid-modified silica for the determination of organophosphate pesticides in water by ultra performance liquid chromatography. Microchem J 106:311–317. CrossRefGoogle Scholar
  133. 133.
    Liang P, Wang F, Wan Q (2013) Ionic liquid-based ultrasound-assisted emulsification microextraction coupled with high performance liquid chromatography for the determination of four fungicides in environmental water samples. Talanta 105:57–62. CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Li M, Zhang J, Li Y, Peng B, Zhou W, Gao H (2013) Ionic liquid-linked dual magnetic microextraction: a novel and facile procedure for the determination of pyrethroids in honey samples. Talanta 107:81–87. CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Yang M, Wu X, Xi X, Zhang P, Yang X, Lu R, Zhou W, Zhang S, Gao H, Li J (2016) Using β-cyclodextrin/attapulgite immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chem 197(B):1064-1072. doi:10.1016/j.foodchem.2015.11.107PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, Gao H (2015) Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled to high performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A 1381:37–47. CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Vazquez MM, Vazquez PP, Galera MM, Moreno AU (2014) Comparison of two ionic liquid dispersive liquid-liquid microextraction approaches for the determination of benzoylurea insecticides in wastewater using liquid chromatography-quadrupole-linear ion trap-mass spectrometry: Evaluation of green parameters. J Chromatogr A 1356:1–9. CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Yu H, Merib J, Anderson JL (2016) Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. J Chromatogr A 1463:11–19. CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wang Y, Sun Y, Xu B, Li X, Jin R, Zhang H, Song D (2014) Magnetic ionic liquid-based dispersive liquid–liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography. J Chromatogr A 1373:9–16PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Wang Y, Sun Y, Xu B, Li X, Wang X, Zhang H, Song D (2015) Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid–liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta 888:67–74PubMedCrossRefGoogle Scholar
  141. 141.
    Marube LC, Caldas SS, Dos Santos EO, Michaelsen A, Primel EG (2018) Multi-residue method for determination of thirty-five pesticides, pharmaceuticals and personal care products in water using ionic liquid–dispersive liquid–liquid microextraction combined with liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 29(6):1349-1359. doi:10.21577/0103-5053.20170234Google Scholar
  142. 142.
    Wang Y-L, You L-Q, Mei Y-W, Liu J-P, He L-J (2016) Benzyl functionalized ionic liquid as new extraction solvent of dispersive liquid-liquid microextraction for enrichment of organophosphorus pesticides and aromatic compounds. Chin J Anal Chem 44(6):942–949. CrossRefGoogle Scholar
  143. 143.
    Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M (2018) In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. J Chromatogr A 1559:95–101. CrossRefGoogle Scholar
  144. 144.
    Wang K, Jiang J, Kang M, Li D, Zang S, Tian S, Zhang H, Yu A, Zhang Z (2017) Magnetical hollow fiber bar collection of extract in homogenous ionic liquid microextraction of triazine herbicides in water samples. Anal Bioanal Chem 409(10):2569–2579. CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Ravelo-Pérez LM, Hernández-Borges J, Asensio-Ramos M, Rodríguez-Delgado MÁ (2009) Ionic liquid based dispersive liquid–liquid microextraction for the extraction of pesticides from bananas. J Chromatogr A 1216(43):7336–7345. CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Ravelo-Perez LM, Hernandez-Borges J, Herrera-Herrera AV, Angel Rodriguez-Delgado M (2009) Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction. Anal Bioanal Chem 395(7):2387–2395. CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Santalad A, Srijaranai S, Burakham R, Glennon JD, Deming RL (2009) Anal Bioanal Chem 394:1307–1317PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Vichapong J, Burakham R, Srijaranai S, Grudpan K (2011) Room temperature imidazolium ionic liquid: a solvent for extraction of carbamates prior to liquid chromatographic analysis. Talanta 84:1253–1258. CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Zhang L, Chen F, Liu S, Chen B, Pan C (2012) Ionic liquid-based vortex-assisted dispersive liquid-liquid microextraction of organophosphorus pesticides in apple and pear. J Sep Sci 35(18):2514–2519PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Abdulra’uf LB, Sirhan AY, Tan GH (2015) Applications of experimental design to the optimization of microextraction sample preparation parameters for the analysis of pesticide residues in fruits and vegetables. J AOAC Int 98(5):1171–1185. CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Stalikas C, Fiamegos Y, Sakkas V, Albanis T (2009) Developments on chemometric approaches to optimize and evaluate microextraction. J Chromatogr A 1216(2):175–189. CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    He L, Luo X, Jiang X, Qu L (2010) A new 1,3-dibutylimidazolium hexafluorophosphate ionic liquid-based dispersive liquid-liquid microextraction to determine organophosphorus pesticides in water and fruit samples by high-performance liquid chromatography. J Chromatogr A 1217(31):5013–5020PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Zhang Y, Wang X, Lin C, Fang G, Wang S (2012) A novel SPME fiber chemically linked with 1-vinyl-3-hexadecylimidazolium hexafluorophosphate Ionic Liquid Coupled with GC for the simultaneous determination of pyrethroids in vegetables. Chromatogr 75:789–797. CrossRefGoogle Scholar
  154. 154.
    Zhang J, Li M, Li Y, Li Z, Wang F, Li Q, Zhou W, Lu R, Gao H (2013) Application of ionic-liquid-supported magnetic dispersive solid-phase microextraction for the determination of acaricides in fruit juice samples. J Sep Sci 36(19):3249–3255. CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Zhang J, Liang Z, Guo H, Gao P, Lu R, Zhou W, Zhang S, Gao H (2013) Ionic liquid-based totally organic solvent-free emulsification microextraction coupled with high performance liquid chromatography for the determination of three acaricides in fruit juices. Talanta 115:556–562. CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Han D, Tang B, Row KH (2014) Determination of pyrethroid pesticides in tomato using ionic liquid-based dispersive liquid-liquid microextraction. J Chromatogr Sci 52(3):232–237. CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Yang M, Zhang P, Hu L, Lu R, Zhou W, Zhang S, Gao H (2014) Ionic liquid-assisted liquid-phase microextraction based on the solidification of floating organic droplets combined with high performance liquid chromatography for the determination of benzoylurea insecticide in fruit juice. J Chromatogr A 1360:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Tian M, Cheng R, Ye J, Liu X, Jia Q (2014) Preparation and evaluation of ionic liquid-calixarene solid-phase microextraction fibres for the determination of triazines in fruit and vegetable samples. Food Chem 145:28–33. CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Chen X, You X, Liu F, Hou F, Zhang X (2015) Ionic-liquid-based manual-shaking-and ultrasound-assisted, surfactant-enhanced emulsification microextraction for the determination of three fungicide residues in juice samples. J Sep Sci 38(1):93–99. CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Pelit FO, Pelit L, Dizdas TN, Ertas HCA, Yalcinkaya EE, Turkmen H, Ertas FN (2015) A novel polythiopene-ionic liquid modified clay composite solid phase microextraction fiber: preparation, characterization and application to pesticide analysis. Anal Chim Acta 859:37–45. CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Zhang Y, Zhang Y, Nie J, Jiao B, Zhao Q (2016) Determination of triazole fungicide residues in fruits by QuEChERS combined with ionic liquid-based dispersive liquid-liquid microextraction: optimization using response surface methodology. Food Anal Methods 9:3509–3519. CrossRefGoogle Scholar
  162. 162.
    Haghi JN, Husain SW, Azar PA, Tehran MS (2017) Fabrication of silica nanoparticle-PEG-ionic liquid SPME fiber for determination of pesticide residues in tomato. IIOAB J 8(5):11–17Google Scholar
  163. 163.
    You X, Chen X, Liu F, Hou F, Li Y (2018) Ionic liquid–based air-assisted liquid–liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples. Food Chem 239:354–359. CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Pang L, Yang P, Pang R, Lu X, Xiao J, Li S, Zhang H, Zhao J (2018) Ionogel-based ionic liquid coating for solid-phase microextraction of organophosphorus pesticides from wine and juice samples. Food Anal Methods 11(1):270–281. CrossRefGoogle Scholar
  165. 165.
    Lawal A, Wong RCS, Tan GH, Abdulra’uf LB (2018) Determination of pesticide residues in fruit and vegetables by high-performance liquid chromatography-tandem mass spectrometry with multivariate response surface methodology. Anal Lett In Press. CrossRefGoogle Scholar
  166. 166.
    SANTE-11813 (2017) Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. Accessed 12 June 2019
  167. 167.
    Lawal A, Wong RCS, Tan GH, Abdulra’uf LB, Alsharif AMA (2018) Multi-pesticide residues determination in samples of fruits and vegetables using chemometrics approach to QuEChERS-dSPE coupled with ionic liquid-based DLLME and LC–MS/MS. Chromatogr 81(5):759–768. CrossRefGoogle Scholar
  168. 168.
    Wang S, Liu C, Yang S, Liu F (2013) Ionic liquid-based dispersive liquid-liquid microextraction following high-performance liquid chromatography for the determination of fungicides in fruit juices. Food Anal Methods 6(2):481–487. CrossRefGoogle Scholar
  169. 169.
    Wang J, Xiong J, Baker GA, Jiji RD, Baker SN (2013) Developing microwave-assisted ionic liquid microextraction for the detection and tracking of hydrophobic pesticides in complex environmental matrices. RSC Adv 3(38):17113–17119. CrossRefGoogle Scholar
  170. 170.
    Ruan C, Zhao X, Liu C (2015) Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J Sep Sci 38(17):2931–2937. CrossRefPubMedGoogle Scholar
  171. 171.
    Vichapong J, Burakham R, Srijaranai S (2016) Ionic liquid-based vortex-assisted liquid–liquid microextraction for simultaneous determination of neonicotinoid insecticides in fruit juice samples. Food Anal Methods 9(2):419–426. CrossRefGoogle Scholar
  172. 172.
    Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qa S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 48:9457–9460CrossRefGoogle Scholar
  173. 173.
    Wu M, Chen G, Liu P, Zhou W, Jia Q (2016) Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection. Analyst 141(1):243–250. CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Zhang Y, Zhang Y, Zhao Q, Chen W, Jiao B (2016) Vortex-assisted ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of triazole fungicides in fruit juices. Food Anal Methods 9(3):596–604. CrossRefGoogle Scholar
  175. 175.
    Farajzadeh MA, Bamorowat M, Mogaddam MRA (2016) Ringer tablet-based ionic liquid phase microextraction: application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples. Talanta 160:211–216. CrossRefPubMedGoogle Scholar
  176. 176.
    Wang H, Yang X, Hu L, Gao H, Lu R, Zhang S, Zhou W (2016) Detection of triazole pesticides in environmental water and juice samples using dispersive liquid-liquid microextraction with solidified sedimentary ionic liquids. New J Chem 40(5):4696–4704. CrossRefGoogle Scholar
  177. 177.
    Farajzadeh MA, Bamorowat M, Afshar Mogaddam MR (2016) Development of a dispersive liquid-liquid microextraction method based on solidification of a floating ionic liquid for extraction of carbamate pesticides from fruit juice and vegetable samples. RSC Adv 6(114):112939–112948. CrossRefGoogle Scholar
  178. 178.
    Farajzadeh MA, Bamorowat M, Afshar Mogaddam MR (2017) Ionic liquid-based air-assisted liquid-liquid microextraction for the extraction and preconcentration of aryloxyphenoxypropionate herbicides from aqueous and vegetable samples followed by HPLC-DAD. Food Anal Methods 10(3):749–758. CrossRefGoogle Scholar
  179. 179.
    Chen X, Zhang X, Liu F, Hou F (2017) Binary–solvent–based ionic–liquid–assisted surfactant-enhanced emulsification microextraction for the determination of four fungicides in apple juice and apple vinegar. J Sep Sci 40(4):901–908. CrossRefPubMedGoogle Scholar
  180. 180.
    Zeng H, Yang X, Yang M, Wu X, Zhou W, Zhang S, Lu R, Li J, Gao H (2017) Ultrasound-assisted, hybrid ionic liquid, dispersive liquid–liquid microextraction for the determination of insecticides in fruit juices based on partition coefficients. J Sep Sci 40(17):3513–3521. CrossRefPubMedGoogle Scholar
  181. 181.
    Su R, Li D, Wu L, Han J, Lian W, Wang K, Yang H (2017) Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography. J Sep Sci 40(14):2950–2958. CrossRefPubMedGoogle Scholar
  182. 182.
    Altunay N, Ülüzger D, Gürkan R (2018) Simple and fast spectrophotometric determination of low levels of thiabendazole residues in fruit and vegetables after pre-concentration with ionic liquid phase microextraction. Food Additives Contaminants Part A Chem Anal Control Exposure Risk Assess 35(6):1139–1154. CrossRefGoogle Scholar
  183. 183.
    Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srček VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Zhao Y, Zhao J, Huang Y, Zhou Q, Zhang X (2014) Toxicity of ionic liquids: database and prediction via quantitative structure—activity relationship method. J Hazard Mater 278:320–329PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Zhang C, Zhu L, Wang J, Zhou T, Xu Y, Cheng C (2017) The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicol Environ Saf 140:235–240PubMedCrossRefGoogle Scholar
  187. 187.
    El-Harbawi M (2014) Toxicity measurement of imidazolium ionic liquids using acute toxicity test. Procedia Chem 9:40–52CrossRefGoogle Scholar
  188. 188.
    Stock F, Hoffmann J, Ranke J, Stormann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholinesterase—a structure-activity relationship consideration. Green Chem 6:286–290CrossRefGoogle Scholar
  189. 189.
    Latała A, Nędzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12(1):60–64CrossRefGoogle Scholar
  190. 190.
    Zhang Z, Liu J-F, Cai X-Q, Jiang W-W, Luo W-R, Jiang G-B (2011) Sorption to dissolved humic acid and its impacts on the toxicity of imidazolium based ionic liquids. Environ Sci Technol 45:1688–1694PubMedCrossRefGoogle Scholar
  191. 191.
    Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404PubMedCrossRefGoogle Scholar
  192. 192.
    Docherty KM, Kulpa JCF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189CrossRefGoogle Scholar
  193. 193.
    Hernandez-Fernandez FJ, Bayo J, de Los Perez, Rios A, Vicente MA, Bernal FJ, Quesada-Medina J (2015) Discovering less toxic ionic liquids by using the Microtox® toxicity test. Ecotoxicol Environ Saf 116C:29–33CrossRefGoogle Scholar
  194. 194.
    Bubalo MC, Radošević K, Redovniković IR, Slivac I, Srček VG (2017) Toxicity mechanisms of ionic liquids. Arh Hig Rada Toksikol 68:171–179PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of Pure and Applied SciencesKwara State University, MaleteIlorinNigeria
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Pure and Industrial Chemistry, Faculty of Natural and Applied SciencesUmaru Musa Yar’adua UniversityKastinaNigeria
  4. 4.Amman Arab UniversityAmmanJordan

Personalised recommendations