Detection Orthogonality in Macromolecular Separations. 2: Exploring Wavelength Orthogonality and Spectroscopic Invisibility Using SEC/DRI/UV/FL

  • André M. StriegelEmail author
  • Walter B. WilsonEmail author
  • Lane C. Sander


We continue herein the exploration of detector orthogonality in size-based macromolecular separations. Previously [5], the sensitivity of viscometric detection was juxtaposed to that of differential refractometry (DRI) and light scattering (LS, both static and dynamic), and it was shown that viscometry is a truly orthogonal detection method to both DRI and LS. Here, via the size-exclusion chromatography (SEC) analysis of blends of polystyrene and poly(methyl methacrylate), we demonstrate the orthogonality of DRI to UV detection and, within the UV region of the electromagnetic spectrum, we also explore the phenomenon of “wavelength orthogonality:” Analytes observable by one detection method are shown to be spectroscopically invisible to another method, or even to the same detection method when operating at a different wavelength. While generally focusing on blends of analytes of different molar masses (different sizes in solution), we also investigate the less-explored case of blends of coeluting analytes (same sizes in solution) where detector orthogonality can inform one’s knowledge of whether or not coelution has occurred. Finally, by incorporating a fluorescence (FL) detector into the experimental set-up, we demonstrate not only its orthogonality to DRI detection but also its sensitivity to the presence of even minor (≈ 1%) fluorescent components in a sample. We hope the present experiments assist in understanding the complementarity of different spectroscopic detection methods and also help highlight the potential role of FL detection, a method which has been largely overlooked in macromolecular separation science.


Size-exclusion chromatography Detection orthogonality Wavelength orthogonality Spectroscopic invisibility Fluorescence Macromolecular separations 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participant or animals performed by any of the authors.


  1. 1.
    Kilz P (2004) Chromatographia 59:3–14CrossRefGoogle Scholar
  2. 2.
    Pasch H (2013) Polym Chem 4:2628–2650CrossRefGoogle Scholar
  3. 3.
    Striegel AM (ed) (2005) Multiple detection in size-exclusion chromatography. ACS Symp Ser 893, American Chemical Society, Washington, DCGoogle Scholar
  4. 4.
    Striegel AM (2005) Anal Chem 77(5):104A–113ACrossRefGoogle Scholar
  5. 5.
    Striegel AM, Pitkänen L (2015) Chromatographia 78:743–751CrossRefGoogle Scholar
  6. 6.
    Striegel AM, Brewer AK (2012) Annu Rev Anal Chem 5:15–34CrossRefGoogle Scholar
  7. 7.
    Striegel AM (2012) Anal Bioanal Chem 402:77–81CrossRefGoogle Scholar
  8. 8.
    Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation. Wiley, HobokenCrossRefGoogle Scholar
  9. 9.
    Wilson WB, Wise SA, Sander LC (2019) Chromatographia 82:399–508CrossRefGoogle Scholar
  10. 10.
    Hayes HV, Wilson WB, Sander LC, Wise SA, Campiglia AD (2018) Anal Methods 10:2668–2675CrossRefGoogle Scholar
  11. 11.
    Moon B, Hoye TR, Macosko CW (2000) J Polym Sci A Polym Chem 38:2177–2185CrossRefGoogle Scholar
  12. 12.
    Li C-Z, Wu F, Xu B, Kandiyoti R (1995) Fuel 74:37–45CrossRefGoogle Scholar
  13. 13.
    Herod AA, Zhang S-F, Johnson BR, Bartle DK, Kandiyoti R (1996) Energy Fuels 10:743–750CrossRefGoogle Scholar
  14. 14.
    Zielke C, Kosik O, Ainalem M-L, Lovegrove A, Stradner A, Nilsson L (2017) PLoS ONE 12(2):e0712034CrossRefGoogle Scholar
  15. 15.
    Zielke C, Teixeira C, Ding H, Cui S, Nyman M, Nilsson L (2017) Carbohydr Polym 157:541–549CrossRefGoogle Scholar
  16. 16.
    Korompokis K, Nilsson L, Zielke C (2018) Food Hydrocolloids 77:659–668CrossRefGoogle Scholar
  17. 17.
    Haidar Ahmad IA, Striegel AM (2010) Anal Bioanal Chem 396:1589–1598CrossRefGoogle Scholar
  18. 18.
    Haidar Ahmad IA, Striegel DA, Striegel AM (2011) Polymer 52:1268–1277CrossRefGoogle Scholar
  19. 19.
    Caltabiano AM, Foley JP, Barth HG (2016) J Chromatogr A 1437:74–87CrossRefGoogle Scholar
  20. 20.
    Caltabiano AM, Foley JP, Striegel AM (2018) J Chromatogr A 1531:83–103CrossRefGoogle Scholar
  21. 21.
    Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  22. 22.
    Striegel AM (2017) Chromatographia 80:989–996CrossRefGoogle Scholar
  23. 23.
    Striegel AM, Sinha P (2019) Anal Chim Acta 1053:186–195CrossRefGoogle Scholar
  24. 24.
    Striegel AM, Haidar Ahmad IA (2018) Chromatographia 81:823–827CrossRefGoogle Scholar
  25. 25.
    Hargis LG (1988) Analytical chemistry–Principles and techniques. Prentice Hall, Englewood CliffsGoogle Scholar
  26. 26.
    Striegel AM (2002) J Chromatogr A 971:151–158CrossRefGoogle Scholar
  27. 27.
    Striegel AM (2003) J Chromatogr A 996:45–51CrossRefGoogle Scholar
  28. 28.
    Chang T, Lee HC, Lee WL, Park S, Ko C (1999) Macromol Chem Phys 200:2188–2204CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Chemical Sciences DivisionNational Institute of Standards and Technology (NIST)GaithersburgUSA

Personalised recommendations