Advertisement

Simultaneous Determination of Various Phosphates in Water-Soluble Ammonium Polyphosphate

  • Wen-Ji Xie
  • Xin-Long WangEmail author
  • Yong-Sheng Li
  • De-Hua XuEmail author
  • Yan-Jun Zhong
  • Jing-Xu Yang
Original
  • 13 Downloads

Abstract

Based on ion chromatography, this study developed a rapid method for simultaneous determination of linear polyphosphates (PPs) of orthophosphate (P1), pyrophosphate (P2), trimetaphosphate (P3m), tripolyphosphate (P3), tetraphosphate (P4), pentaphosphate (P5), and hexaphosphate (P6) in water-soluble ammonium polyphosphate (WAPP). Investigation indicated that the retention of PPs in column was endothermic and cooling column benefited the elution of PPs. With adjusting the elution mode, eluent (KOH) concentration, gradient time, flowrate, and column temperature, the optimized results were as follows: the injection volume of sample was 1.3 μL, column temperature was 30 °C, and flowrate of the eluent was 1.2 ml min−1. The linear equations for six phosphates are: y = 0.011cP1 + 0.021 (r = 0.9998), y = 0.012cP2 + 0.023, y = 0.011cP3m − 0.013 (r = 0.9997), y = 0.12cP3 + 0.017 (r = 0.9999), y = 0.011cP4 + 0.004 (r = 0.9983), y = 0.011cP5 − 0.082 (r = 0.9962), and y = 0.013cP6 − 0.029 (r = 0.9989), respectively. The determination ranges are: 1–500 mg L−1 for P1, P2, P3m, and P3; and 1–100 mg L−1 for P4, P5, and P6. The recovery is in the range 95–104% for P1, P2, P3m, P3, P4, P5, and P6; the detection limit is in the range 0.17–0.54 mg L−1 and RSDs of intra- and inter-day determination are 0.56–2.51% (n = 5) for seven PPs, and the analysis period is 15 min. The method was consistent with both gravimetric method and molybdenum blue method, while the RSD was in the range 0.61–1.87%. This rapid method can be applied in the determination of total phosphorus and various phosphates in PPs.

Keywords

Ammonium polyphosphate Linear polyphosphate Simultaneous determination Ion chromatography 

Notes

Acknowledgements

This work in funding was supported by the National Key Research and Development Program of China (2016YFD0200404).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Matochaand JE, Coker DL (2012) Commun Soil Sci Plan 43:1482–1489CrossRefGoogle Scholar
  2. 2.
    Mcbeath TM, Lombi E, Mclaughlin MJ, Bünemann EK (2007) Commun Soil Sci Plan 38(17–18):2445–2460CrossRefGoogle Scholar
  3. 3.
    Yang JX, Kong XJ, Xu DH, Xie WJ, Wang XL (2019) Chem Eng J 359:1453–1462CrossRefGoogle Scholar
  4. 4.
    El-Sayed SAM (2015) Alex Sci Exch J 36:47–57Google Scholar
  5. 5.
    Torres-Dorante LO, Claassen N, Steingrobe B, Olfs HW (2005) J Plant Nutr Soil Sci 168:352–358CrossRefGoogle Scholar
  6. 6.
    Blanchar RW, Hossner LR (1969) Soil Sci Soc Am Proc 33:622–625CrossRefGoogle Scholar
  7. 7.
    Yang JX, Xie WJ, Kong XJ, Xu DH, Wang XL (2018) Chem Eng Process 133:58–65CrossRefGoogle Scholar
  8. 8.
    Mcbeath TM, Lombi E, Mclaughlin MJ, Bünemann EK (2007) J Plant Nutr Soil Sci 170:387–391CrossRefGoogle Scholar
  9. 9.
    Reitzel K, Turner BL (2014) Soil Biol Biochem 74:95–97CrossRefGoogle Scholar
  10. 10.
    Macdonald JC, Mazurek M (1987) J Magn Reson 72:48–60Google Scholar
  11. 11.
    Li Y-S, Muo Y, Xie H-M (2002) Anal Chim Acta 455:315–325CrossRefGoogle Scholar
  12. 12.
    Heinonen JK, Lahti RJ (1981) Anal Biochem 113:313–317CrossRefGoogle Scholar
  13. 13.
    Honeycutt CW (2005) Commun Soil Sci Plant 36:1373–1383CrossRefGoogle Scholar
  14. 14.
    Dick WA, Tabatabai MA (1977) J Environ Qual 6:82–85CrossRefGoogle Scholar
  15. 15.
    Dick WA, Tabatabai MA (1978) Soil Biol Biochem 10:58–65CrossRefGoogle Scholar
  16. 16.
    Editha Karl-Kroupa (1956) Anal Chem 28:1091–1097CrossRefGoogle Scholar
  17. 17.
    Cohn WE, Carter CE (1950) J Am Chem Soc 72:4273–4275CrossRefGoogle Scholar
  18. 18.
    Mennickent S, Diego MD, Vega M (2013) Chromatographia 76:1233–1238CrossRefGoogle Scholar
  19. 19.
    Scott RA, Haight GP (1975) Anal Chem 47:2439–2440CrossRefGoogle Scholar
  20. 20.
    Tanzer JM, Krichevsky MI, Chassy B (1968) J Chromatogr 38:526–531CrossRefGoogle Scholar
  21. 21.
    Cade-Menun BJ (2005) Talanta 66:359–371CrossRefGoogle Scholar
  22. 22.
    Jastrzebska A, Szłyk E (2009) Chem Pap 63:414–419Google Scholar
  23. 23.
    Hrynczyszyn P, Jastrzebska A, Szłyk E (2010) Anal Chim Acta 673:73–78CrossRefGoogle Scholar
  24. 24.
    Kura G (1982) J Chromatogr A 246:73–80CrossRefGoogle Scholar
  25. 25.
    Kura G (1988) J Chromatogr A 447:91–101CrossRefGoogle Scholar
  26. 26.
    Iammarino M, Di TA (2012) Eur Food Res Technol 235:409–417CrossRefGoogle Scholar
  27. 27.
    Thermo Fisher Scientific, Application Update 172 (2016) Determination of polyphosphates using ion chromatography. https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/AU-172-IC-Polyphosphates-LPN2496-EN.pdf. Accessed 8 Aug 2019
  28. 28.
    Sekiguchi Y, Matsunaga A, Yamamoto A, Inoue Y (2000) J Chromatogr A 881:639–644CrossRefGoogle Scholar
  29. 29.
    Shen CY, Stahlheber NE, Dyroff DR (1969) J Am Chem Soc 91:62–67CrossRefGoogle Scholar
  30. 30.
    Liu GS, Chen WY, Yu JG (2010) Ind Eng Chem Res 49(23):12148–12155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringSichuan UniversityChengduChina

Personalised recommendations