, Volume 82, Issue 10, pp 1459–1466 | Cite as

Rational Rubber Extraction and Simultaneous Determination of Rubber Content and Molecular Weight Distribution in Taraxacum kok-saghyz Rodin by Size-Exclusion Chromatography

  • Na Zhang
  • Tianyang Guo
  • Xiang Ma
  • Jiahui Liu
  • Yiyang DongEmail author
  • Jichuan ZhangEmail author


Taraxacum kok-saghyz Rodin (TKS) is a potential nature rubber source crop. To extract rubber from TKS effectively and quantitate the TKS rubber accurately, we developed a method that can simultaneously determine the rubber content and molecular weight distribution (MWD) of TKS by size-exclusion chromatography (SEC). The solvent types and rubber extraction schemes for sample pretreatment were discussed. The results indicated that the indirect ultrasonic method of extracting rubber from TKS roots required much shorter extraction time than conventional extraction method, and the scheme did not affect the characterization of MWD. In addition, SEC can be used for TKS rubber quantification with a limit of detection of 0.03 mg mL−1, and the intra-day and inter-day precision were 2.31% and 5.24%, respectively. The MWD of TKS rubber demonstrated a unimodal distribution. This developed method has been applied to the determination of real-life samples successfully.


Taraxacum kok-saghyz Rodin Rubber content Size-exclusion chromatography Quantitative analysis Molecular weight distribution 



The authors acknowledge the support of the National Key Research and Development Program of China (2016YFF0203703), the NSFC Grant (51673012), and the Fundamental Research Funds for the Central Universities (PYBZ1828).


This study was funded by the National Key Research and Development Program of China (2016YFF0203703), the NSFC Grant (51673012), and the Fundamental Research Funds for the Central Universities (PYBZ1828).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10337_2019_3773_MOESM1_ESM.pdf (189 kb)
Supplementary material 1 (PDF 189)


  1. 1.
    Bell JL, Burke IC, Neff MM (2015) Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.). J Agric Food Chem 63(2):593–602CrossRefGoogle Scholar
  2. 2.
    Ahrends A, Hollingsworth PM, Ziegler AD, Fox JM, Chen H, Su Y et al (2015) Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob Environ Change 34:48–58CrossRefGoogle Scholar
  3. 3.
    van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25(11):522–529CrossRefGoogle Scholar
  4. 4.
    Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365CrossRefGoogle Scholar
  5. 5.
    Liu G, Zhang X, Zhang T, Zhang J, Zhang P, Wang W (2017) Determination of the content of Eucommia ulmoides gum by variable temperature fourier transform infrared spectrum. Polym Test 63:582–586CrossRefGoogle Scholar
  6. 6.
    Ramirez-Cadavid DA, Cornish K, Michel FC (2017) Taraxacum kok-saghyz (TK): compositional analysis of a feedstock for natural rubber and other bioproducts. Ind Crops Prod 107:624–640CrossRefGoogle Scholar
  7. 7.
    Stolze A, Wanke A, van Deenen N, Geyer R, Pruefer D, Gronover CS (2017) Development of rubber-enriched dandelion varieties by metabolic engineering of the inulin pathway. Plant Biotechnol J 15(6):740–753CrossRefGoogle Scholar
  8. 8.
    Arias M, Herrero J, Ricobaraza M, Hernandez M, Ritter E (2016) Evaluation of root biomass, rubber and inulin contents in nine Taraxacum koksaghyz Rodin populations. Ind Crops Prod 83:316–321CrossRefGoogle Scholar
  9. 9.
    Kreuzberger M, Hahn T, Zibek S, Schiemann J, Thiele K (2016) Seasonal pattern of biomass and rubber and inulin of wild Russian dandelion (Taraxacum koksaghyz L. Rodin) under experimental field conditions. Eur J Agron 80:66–77CrossRefGoogle Scholar
  10. 10.
    Ramirez-Cadavida DA, Valles-Ramireza S, Cornish K, Michel FC (2018) Simultaneous quantification of rubber, inulin, and resins in Taraxacum koksaghyz roots by sequential solvent extraction. Ind Crops Prod 122:647–656CrossRefGoogle Scholar
  11. 11.
    Kirschner J, Štěpánek J, Černý T, De Heer P, van Dijk PJ (2012) Available ex situ germplasm of the potential rubber crop Taraxacum koksaghyz belongs to a poor rubber producer, T. brevicorniculatum (Compositae–Crepidinae). Genet Resour Crop Evolut 60(2):455–471CrossRefGoogle Scholar
  12. 12.
    Krickl S, Touraud D, Kunz W (2017) Investigation of ethanolamine stabilized natural rubber latex from Taraxacum kok-saghyz and from Hevea brasiliensis using zeta-potential and dynamic light scattering measurements. Ind Crops Prod 103:169–174CrossRefGoogle Scholar
  13. 13.
    Buranov AU, Elmuradov BJ (2010) Extraction and characterization of latex and natural rubber from rubber-bearing plants. J Agric Food Chem 58(2):734–743CrossRefGoogle Scholar
  14. 14.
    Musto S, Barbera V, Maggio M, Mauro M, Guerra G, Galimberti M (2016) Crystallinity and crystalline phase orientation of poly(1,4-cis-isoprene) from Hevea brasiliensis and Taraxacum kok-saghyz. Polym Adv Technol 27(8):1082–1090CrossRefGoogle Scholar
  15. 15.
    Schloman WW, GarrotDJ Ray DT (1986) Water stress and seasonal effects on rubber quality in irrigated guayule. J Agrie Food Chem 34:683–685CrossRefGoogle Scholar
  16. 16.
    Veatch-Blohm ME, Ray DT, McCloskey WB (2006) Water-stress-induced changes in resin and rubber concentration and distribution in greenhouse-grown guayule. Agron J 98(3):766CrossRefGoogle Scholar
  17. 17.
    Takeno S, Bamba T, Nakazawa Y, Fukusaki E, Okazawa A, Kobayashi A (2008) A high-throughput and solvent-free method for measurement of natural polyisoprene content in leaves by fourier transform near infrared spectroscopy. J Biosci Bioeng 106(6):537–540CrossRefGoogle Scholar
  18. 18.
    Suchat S, Pioch D, Palu S, Tardan E, van Loo EN, Davrieux F (2013) Fast determination of the resin and rubber content in Parthenium argentatum biomass using near infrared spectroscopy. Ind Crops Prod 45:44–51CrossRefGoogle Scholar
  19. 19.
    Takeno S, Bamba T, Nakazawa Y, Fukusaki E, Okazawa A, Kobayashi A (2008) Quantification of trans-1,4-polyisoprene in Eucommia ulmoides by fourier transform infrared spectroscopy and pyrolysis-gas chromatography/mass spectrometry. J Biosci Bioeng 105(4):355–359CrossRefGoogle Scholar
  20. 20.
    Takeno S, Bamba T, Nakazawa Y, Fukusaki E, Okazawa A, Kobayashi A (2010) High-throughput and highly sensitive analysis method for polyisoprene in plants by pyrolysis-gas chromatography/mass spectrometry. Biosci Biotechnol Biochem 74(1):13–17CrossRefGoogle Scholar
  21. 21.
    Salvucci ME, Coffelt TA, Cornish K (2009) Improved methods for extraction and quantification of resin and rubber from guayule. Ind Crops Prod 30(1):9–16CrossRefGoogle Scholar
  22. 22.
    Guo T, Liu Y, Wei Y, Ma X, Fan Q, Ni J et al (2015) Simultaneous qualitation and quantitation of natural trans-1,4-polyisoprene from Eucommia ulmoides Oliver by gel permeation chromatography (GPC). J Chromatogr B Analyt Technol Biomed Life Sci 1004:17–22CrossRefGoogle Scholar
  23. 23.
    Izumi Y, Aikawa S, Matsuda F, Hasunuma T, Kondo A (2013) Aqueous size-exclusion chromatographic method for the quantification of cyanobacterial native glycogen. J Chromatogr B Analyt Technol Biomed Life Sci 930:90–97. CrossRefGoogle Scholar
  24. 24.
    Castignolles P, Graf R, Parkinson M, Wilhelm M, Gaborieau M (2009) Detection and quantification of branching in polyacrylates by size-exclusion chromatography (SEC) and melt-state 13C NMR spectroscopy. Polymer 50(11):2373–2383CrossRefGoogle Scholar
  25. 25.
    Mena JA, Ramirez OT, Palomares LA (2005) Quantification of rotavirus-like particles by gel permeation chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 824(1–2):267–276. CrossRefGoogle Scholar
  26. 26.
    Mourey TH (2004) SEC molecular-weight-sensitive detection. Int J Polym Anal Charact 9(1–3):97–135CrossRefGoogle Scholar
  27. 27.
    Ritter A, Schmid M, Affolter S (2010) Determination of molecular weights by size exclusion chromatography (SEC)—Results of round robin tests. Polym Testing 29(8):945–952CrossRefGoogle Scholar
  28. 28.
    Fan W, Fan X, Tian W, Zhu X, Zhang W (2014) Differential analysis on precise determination of molecular weight of triblock copolymer using SEC/MALS and MALDI-TOF MS. Polym Testing 40:116–123CrossRefGoogle Scholar
  29. 29.
    Zinck P, Terrier M, Mortreux A, Visseaux M (2009) On the number-average molecular weight of poly(1,4-trans isoprene) determined by conventional GPC. Polym Testing 28(1):106–108CrossRefGoogle Scholar
  30. 30.
    Pearson CH, Cornish K, Rath DJ (2013) Extraction of natural rubber and resin from guayule using an accelerated solvent extractor. Ind Crops Prod 43:506–510CrossRefGoogle Scholar
  31. 31.
    Li SD, YuHP Peng Z, Zhu CS, Li PS (2000) Study on thermal degradation of soland gel of natural rubber. J Appl Polym Sci 75:1339–1344CrossRefGoogle Scholar
  32. 32.
    Hodgson-Kratky KJM, Stoffyn OM, Wolyn DJ (2017) Recurrent selection for rubber yield in Russian dandelion. J Am Soc Hortic Sci 142(6):470–475CrossRefGoogle Scholar
  33. 33.
    Coffelt TA, Nakayama FS, Ray DT, Cornish K, McMahan CM (2009) Post-harvest storage effects on guayule latex, rubber, and resin contents and yields. Ind Crops Prod 29(2–3):326–335. CrossRefGoogle Scholar
  34. 34.
    Moreno-Vilet L, Bostyn S, Flores-Montano JL, Camacho-Ruiz RM (2017) Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans. Food Chem 237:833–840CrossRefGoogle Scholar
  35. 35.
    Liu DZ, Gu Y, Li YZ, Zhou JH (1956) Rubber plants. Science Press, Beijing, p 28Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
  2. 2.Xinjiang Production and Construction Group Key Laboratory of Agricultural Products Processing, College of Life ScienceTarim UniversityAlarChina
  3. 3.Beijing Higher Institution Engineering Research Center of Food Additives and IngredientsBeijing Technology and Business UniversityBeijingChina
  4. 4.Center of Advanced Elastomer Materials, College of Materials and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations