Advertisement

Recent Advances and Trends in Applications of Solid-Phase Extraction Techniques in Food and Environmental Analysis

  • Mohammad Faraji
  • Yadollah YaminiEmail author
  • Mehrnoosh Gholami
Review
Part of the following topical collections:
  1. Recent Trends in Solid-Phase Extraction for Environmental, Food and Biological Sample Preparation

Abstract

This paper presents an overview of the more recent applications of solid-phase extraction (SPE, from January 2015 to September 2018, which have been recorded in Web of Science) in preparation of food and environmental samples. First, the history, milestones, principles, and features of different formats of SPE are discussed. In addition, miniaturization of SPE techniques and comparison of classical SPE and miniaturized SPE—called dispersive micro solid-phase extraction (D-μ-SPE)—are covered. Next, the published applications in extraction and separation of diverse organic and inorganic analytes from a variety of food and environmental samples are classified on the basis of their sorbents including layered double hydroxide, metal organic frameworks, carbon nanotube-based sorbents, graphene-based sorbents, β-cyclodextrin-based sorbents, dendrimer-based sorbents, molecular or ion recognition sorbents, and restricted access materials. Finally, the future trends in this area are discussed.

Keywords

Solid-phase extraction Miniaturization Advanced sorbents Food samples Environmental samples 

Abbreviations

17β-E2

17β-Estradiol

2-PTSC

2-Pyridinecarboxaldehyde thiosemicarbazone

AAS

Atomic absorption spectrometry

ACN

Acetonitrile

BET

Brunauer–Emmette–Teller

BP

Buckypaper

BPA

Bisphenol A

BSA

Bovine serum albumin

BTEXs

Benzene, toluene, ethylbenzene, and xylenes

CD

Cyclodextrin

CNT

Carbon nanotube

D-µ-SPE

Dispersive micro solid-phase extraction

DLR

Dynamic linear range

DSPE

Dispersive solid-phase extraction

FAAS

Flame atomic absorption spectrometry

FTIR

Fourier-transform infrared spectroscopy

G

Graphene

GAC

Green analytical chemistry

GC/NCI-MS

Gas chromatography negative chemical ionization mass spectrometry

GC

Gas chromatography

GCB

Graphitized carbon black

GC-ECD

Gas chromatography–electron capture detection

GC-FID

Gas chromatography flame–ionization detection

GC-FPD

Gas chromatography–flame photometric detection

G-CL

Graphene on the zeolite clinoptilolite

GC–MS

Gas chromatography mass spectrometry

GFAAS

Graphite furnace atomic absorption spectroscopy

GO

Graphene oxide

HLB

Hydrophilic/lipophilic balance

HPCPs

Hierarchical porosity coordination polymer

HPGA

Hierarchical porous graphene aerogel

HPLC

High-performance liquid chromatography

HPLC-DAD

High-performance liquid chromatography–diode array detection

HPLC-FLD

High-performance liquid chromatography–fluorescence detection

HPLC-MS

High-performance liquid chromatography/mass spectrometry

HPLC-PDA

High-performance liquid chromatography–photodiode array

HPLC-UV

High-performance liquid chromatography–ultraviolet detection

HR-CS GFAAS

High resolution continuum source graphite furnace atomic absorption spectrometry

HS-SPME

Headspace solid-phase microextraction

IAC-IMS

Immunoaffinity column–ion mobility spectrometry

ic-ELISA

Enzyme-linked immunosorbent assay

ICP-OES

Inductively coupled plasma optical emission spectrometry

ICP-AES

Inductively coupled plasma atomic emission spectrometry

ICP-MS

Inductively coupled plasma mass spectrometry

IIPs

Ion-imprinted polymers

LC–APCI–MS/MS

Liquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry

LC–MS/MS

Liquid chromatography–tandem mass spectrometry

LDH

Layered double hydroxide

LLE

Liquid–liquid extraction

LODs

Limits of detection

LOQ

Limit of quantification

LSE

Liquid–solid extractions

mAb

Monoclonal antibody

MAX

Mixed-mode, strong anion exchange

MCT

Magnetic carrier technology

MCX

Mixed-mode, strong cation exchange

MDMIPs

Magnetic dummy molecularly imprinted polymers

MEKC

Micellar electrokinetic chromatography

MIPs

Molecularly imprinted polymers

MMD

Mixed-matrix disks

MNPs

Magnetic nanoparticles

MOF

Metal-organic framework

MWCNTs

Multi-walled carbon nanotubes

NAA

1-Naphthalene acetic acid

NOA

Naphthoxyacetic acid

NPAHs

Nitro-polycyclic aromatic hydrocarbons

NR

Not reported

NSAIDs

Non-steroidal anti-inflammatory drugs

OCPs

Organochlorine pesticides

OCPs

Organochlorine pesticides

OPPs

Organophosphorus pesticides

PAEs

Phthalate esters

PAHs

Polycyclic aromatic hydrocarbons

NPAHs

Nitro polycyclic aromatic hydrocarbons

PCPs

Porous coordination polymers

PCX

Cation exchange polymer material

PFOA

Perfluorooctanoic acid

PFOS

Perfluorooctanesulfonic acid

PILs

Polymeric ionic liquids

PM-MIMs

Photonic-magnetic responsive molecularly imprinted microspheres

POPAM

Polypropylene amine dendrimers

PPCPs

Present pharmaceuticals and personal care products

ppt

Parts per trillion

PSA

Primary secondary amines

PTh

Polythiophene

PVDF

Polyvinylidene difluoride

QuEChERS

Quick, easy, cheap, effective, rugged, and safe

RACNTs

Restricted access carbon nanotubes

RAM

Restricted access materials

RP-LC-PDA

Reversed-phase liquid chromatography–photodiode array

RSD

Relative standard deviation

SAX

Strong anion exchange

SBA

Serum bovine albumin

SBSE

Stir-bar sorptive extraction

SCX

Strong cation exchange

SEM

Scanning electron microscopy

SERS

Surface-enhanced Raman spectroscopy

SPE

Solid-phase extraction

SPME

Solid-phase microextraction

TEM

Transmission electron microscopy

TFA

Trifluoroacetic acid

TGA

Thermogravimetric analysis

UA-DSPE-IIP

Ultrasonic assisted dispersive solid-phase extraction based on ion-imprinted polymer

UHPLC-MS/MS

Ultrahigh-performance liquid chromatography–tandem mass spectrometry

XRD

X-ray diffraction pattern

XPS

X-ray photoelectron spectra

WC-TMMIPs

Prepared water-compatible temperature and magnetic dual-responsive MIPs

ZEN

Zearalenol

β-CD/MRGO

β-Cyclodextrin/magnetic reduced graphene oxide

β-CD

β-Cyclodextrin

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Wen S, Zhu X (2014) Food Anal Methods 7:291–297Google Scholar
  2. 2.
    Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Trends Anal Chem 80:655–667Google Scholar
  3. 3.
    Silvestre CI, Santos JL, Lima JL, Zagatto EA (2009) Anal Chim Acta 652:54–65Google Scholar
  4. 4.
    AOAC official methods 999.07–Aflatoxin B1 and total aflatoxins in peanut butter, pistachio paste, fig paste and paprika powder: immunoaffinity column liquid chromatography with post-column derivatization. Official methods of analysis of AOAC Int, 18th edn, vol II, chap 49 natural toxins. AOAC Int, GaithersburgGoogle Scholar
  5. 5.
    AOAC official methods 991.30–Aflatoxin in corn, row peanuts and peanut butter: immunoaffinity (aflatest) method. Official methods of analysis of AOAC Int, 18th edn, vol II, chap 49 natural toxins. AOAC Int, GaithersburgGoogle Scholar
  6. 6.
    ISO 1650 (2003) Foodstuffs-determination of aflatoxinB1, and total content of aflatoxins B1, B2, G1 and G2 in cereals, nuts and derived products—high-performance liquid chromatographic methodGoogle Scholar
  7. 7.
    ISO 15753 (2016) Animal and vegetable fat oils-determination of polycyclic aromatic hydrocarbonsGoogle Scholar
  8. 8.
    BS EN15662-2008—Foods of plant origin. Determination of pest residues using GC–MS and/or LC–MS/MS following acetonitrile extraction/partitioning and cleanup by dispersive SPE. QuEChERS-methodGoogle Scholar
  9. 9.
    AOAC official methods 2013.05-Aflatoxins B1, B2, G1 and G2 in olive oil, peanut oil and sesame oil–immunoaffinity column clean up and liquid chromatographic method. AOAC Int, GaithersburgGoogle Scholar
  10. 10.
    Braus H, Middleton F, Walton G (1951) Anal Chem 23:1160–1164Google Scholar
  11. 11.
    Liška I (2000) J Chromatogr A 885:3–16Google Scholar
  12. 12.
    Hennion MC (1999) J Chromatogr A 856:3–54Google Scholar
  13. 13.
    Poole CF, Gunatilleka AD, Sethuraman R (2000) J Chromatogr A 885:17–39Google Scholar
  14. 14.
    Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2016) Trends Anal Chem 77:23–43Google Scholar
  15. 15.
    Wen Y, Chen L, Li J, Liu D, Chen L (2014) Trends Anal Chem 59:26–41Google Scholar
  16. 16.
    Cloarec O, Gonzalez C, Touraud E, Thomas O (2002) Anal Chim Acta 453:245–252Google Scholar
  17. 17.
    Leandro CC, Hancock P, Fussell RJ, Keely BJ (2007) J Chromatogr A 1166:152–162Google Scholar
  18. 18.
    Thurman EM, Snavely K (2000) Trends Anal Chem 19:18–26Google Scholar
  19. 19.
    Erger C, Schmidt TC (2014) Trends Anal Chem 61:74–82Google Scholar
  20. 20.
    Ghani M, Picó MFF, Salehinia S, Cabello CP, Maya F, Berlier G, Saraji M, Cerdà V, Palomino GT (2017) J Chromatogr A 1488:1–9Google Scholar
  21. 21.
    Majors RE (2001) LC GC 19:678–687Google Scholar
  22. 22.
    Shen Q, Dong W, Wang Y, Gong L, Dai Z, Cheung HY (2013) J Pharm Biomed Anal 80:136–140Google Scholar
  23. 23.
    Yan H, Sun N, Liu S, Row KH, Song Y (2014) Food Chem 158:239–244Google Scholar
  24. 24.
    Du T, Cheng J, Wu M, Wang X, Zhou H, Cheng M (2014) J Chromatogr B 951:104–109Google Scholar
  25. 25.
    Han Q, Aydan T, Yang L, Zhang X, Liang Q, Ding M (2018) Anal Chim Acta 1009:48–55Google Scholar
  26. 26.
    Khezeli T, Daneshfar A (2017) Trends Anal Chem 89:99–118Google Scholar
  27. 27.
    Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) J AOAC Int 86:412–431Google Scholar
  28. 28.
    Płotka-Wasylka J (2018) Talanta 181:204–209Google Scholar
  29. 29.
    Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Trends Anal Chem 37:61–72Google Scholar
  30. 30.
    Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2015) Trends Anal Chem 73:19–38Google Scholar
  31. 31.
    Faraji M, Yamini Y, Rezaee M (2010) J Iran Chem Soc 7:1–37Google Scholar
  32. 32.
    Azzouz A, Kailasa SK, Lee SS, Rascón AJ, Ballesteros E, Zhang M, Kim KH (2018) Trends Anal Chem 108:347–369Google Scholar
  33. 33.
    González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ (2016) Trends Anal Chem 85:203–220Google Scholar
  34. 34.
    Faraji M (2016) Nanochem Res 1:264–290Google Scholar
  35. 35.
    Robinson PJ, Dunnill P, Lilly MD (1973) Biotechnol Bioeng 15:603–606Google Scholar
  36. 36.
    Sajid M, Basheer C (2016) Trends Anal Chem 75:174–182Google Scholar
  37. 37.
    Zhou W, Zhang W, Chen Z (2017) Appl Surf Sci 392:153–161Google Scholar
  38. 38.
    Abolghasemi MM, Yousefi V, Piryaei M (2015) Microchim Acta 182:1177–1186Google Scholar
  39. 39.
    Abdolmohammad-Zadeh H, Kohansal S, Sadeghi GH (2011) Talanta 84:368–373Google Scholar
  40. 40.
    Ghani M, Frizzarin RM, Maya F, Cerdà V (2016) J Chromatogr A 1453:1–9Google Scholar
  41. 41.
    Shamsayei M, Yamini Y, Asiabi H (2018) Appl Clay Sci 162:534–542Google Scholar
  42. 42.
    Zhao X, Liu S, Wang P, Tang Z, Niu H, Cai Y, Wu F, Wang H, Meng W, Giesy JP (2015) J Chromatogr A 1414:22–30Google Scholar
  43. 43.
    Zhou Q, Lei M, Li J, Zhao K, Liu Y (2016) J Chromatogr A 1441:1–7Google Scholar
  44. 44.
    Asiabi H, Yamini Y, Shamsayei M, Tahmasebi E (2017) Chem Eng J 323:212–223Google Scholar
  45. 45.
    Yang D, Li X, Meng D, Wang M, Yang Y (2017) Food Chem 237:870–876Google Scholar
  46. 46.
    Babaee S, Daneshfar A, Khezeli T (2017) Ultrason Sonochem 34:847–855Google Scholar
  47. 47.
    Soltani R, Shahvar A, Dinari M, Saraji M (2018) Ultrason Sonochem 40:395–401Google Scholar
  48. 48.
    Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM (2017) Trends Anal Chem 90:114–134Google Scholar
  49. 49.
    Hashemi B, Zohrabi P, Raza N, Kim KH (2017) Trends Anal Chem 97:65–82Google Scholar
  50. 50.
    Jia Y, Zhao Y, Zhao M, Wang Z, Chen X, Wang M (2018) J Chromatogr A 1551:21–28Google Scholar
  51. 51.
    Ma J, Wu G, Li S, Tan W, Wang X, Li J, Chen L (2018) J Chromatogr A 1553:57–66Google Scholar
  52. 52.
    Liu S, Xie L, Hu Q, Yang H, Pan G, Zhu F, Yang S, Ouyang G (2017) Anal Chim Acta 987:38–46Google Scholar
  53. 53.
    Zhou Q, Lei M, Wu Y, Yuan Y (2017) J Chromatogr A 1487:22–29Google Scholar
  54. 54.
    Liu Y, Gao Z, Wu R, Wang Z, Chen X, Chan TWD (2017) J Chromatogr A 1479:55–61Google Scholar
  55. 55.
    Lu N, Wang T, Zhao P, Zhang L, Lun X, Zhang X, Hou X (2016) Anal Bioanal Chem 408:8515–8528Google Scholar
  56. 56.
    Huang X, Liu Y, Liu G, Li L, Xu X, Zheng S, Xu D, Gao H (2018) RSC Adv 8:25351–25360Google Scholar
  57. 57.
    Wang R, Chen Z (2017) Microchim Acta 184:3867–3874Google Scholar
  58. 58.
    Arnnok P, Patdhanagul N, Burakham R (2017) Talanta 164:651–661Google Scholar
  59. 59.
    Zhang S, Yao W, Ying J, Zhao H (2016) J Chromatogr A 1452:18–26Google Scholar
  60. 60.
    Li QL, Wang LL, Wang X, Wang ML, Zhao RS (2016) J Chromatogr A 1449:39–47Google Scholar
  61. 61.
    Rocío-Bautista P, Pino V, Ayala JH, Pasán J, Ruiz-Pérez C, Afonso AM (2016) J Chromatogr A 1436:42–50Google Scholar
  62. 62.
    Ren JY, Wang XL, Li XL, Wang ML, Zhao RS, Lin JM (2018) Anal Bioanal Chem 410:1657–1665Google Scholar
  63. 63.
    Shi XR, Chen XL, Hao YL, Li L, Xu HJ, Wang MM (2018) J Chromatogr B 1086:146–152Google Scholar
  64. 64.
    Ghazaghi M, Shirkhanloo H, Mousavi HZ, Rashidi AM (2015) Microchim Acta 182:1263–1272Google Scholar
  65. 65.
    Ma J, Yao Z, Hou L, Lu W, Yang Q, Li J, Chen L (2016) Talanta 161:686–692Google Scholar
  66. 66.
    Wu G, Ma J, Li S, Guan J, Jiang B, Wang L, Li J, Wang X, Chen L (2018) J Colloid Interface Sci 528:360–371Google Scholar
  67. 67.
    Yang XQ, Yang CX, Yan XP (2013) J Chromatogr A 1304:28–33Google Scholar
  68. 68.
    Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S (2009) Micropor Mesopor Mater 120:325–330Google Scholar
  69. 69.
    Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente RM, Otárola-Jiménez J (2015) Anal Chim Acta 892:10–26Google Scholar
  70. 70.
    Zhao P, Wang Z, Li K, Guo X, Zhao L (2018) J Chromatogr A 1568:8–21Google Scholar
  71. 71.
    Mirikaram N, Salemi A, Vosough M (2017) Chromatographia 80:157–164Google Scholar
  72. 72.
    Khan M, Yilmaz E, Soylak M (2016) J Mol Liq 224:639–647Google Scholar
  73. 73.
    de Faria HD, Rosa MA, Silveira AT, Figueiredo EC (2017) Food Chem 225:98–106Google Scholar
  74. 74.
    El Atrache LL, Hachani M, Kefi BB (2016) Int J Environ Sci Technol 13:201–208Google Scholar
  75. 75.
    Makkliang F, Kanatharana P, Thavarungkul P, Thammakhet C (2015) Food Chem 166:275–282Google Scholar
  76. 76.
    Jiang HL, Lin YL, Li N, Wang ZW, Liu M, Zhao RS, Lin JM (2018) Food Chem 269:413–418Google Scholar
  77. 77.
    Du LJ, Hu YH, Wang QY, Zhang QD, Chen YB, Peng L-Q, Pan S-L, Li Q, Cao J (2018) Food Chem 262:118–128Google Scholar
  78. 78.
    Zacs D, Rozentale I, Reinholds I, Bartkevics V (2018) Food Anal Methods 11:2508–2517Google Scholar
  79. 79.
    Kılınç E, Çelik KS, Bilgetekin H (2018) Food Chem 242:533–537Google Scholar
  80. 80.
    Pérez-Fernández V, Gentili A, Martinelli A, Caretti F, Curini R (2016) J Chromatogr A 1428:255–266Google Scholar
  81. 81.
    Xu X, Long N, Lv J, Wang L, Zhang M, Qi X, Zhang L (2016) Food Anal Methods 9:30–37Google Scholar
  82. 82.
    Zhao H, Li N, Li J, Qiao X, Xu Z (2015) Food Anal Methods 8:1363–1371Google Scholar
  83. 83.
    Mohan VB, Lau KT, Hui D, Bhattacharyya D (2018) Compos Part B: Eng 142:200–220Google Scholar
  84. 84.
    Sitko R, Zawisza B, Malicka E (2013) Trends Anal Chem 51:33–43Google Scholar
  85. 85.
    Li N, Jiang HL, Wang XL, Wang X, Xu GJ, Zhang B, Wang L, Zhao R-S, Lin J-M (2018) Trends Anal Chem 102:60–74Google Scholar
  86. 86.
    Mateos R, Vera-López S, Díez-Pascual AM, San Andrés MP (2018) Appl Clay Sci 163:279–290Google Scholar
  87. 87.
    Babaei A, Zeeb M, Eshaghi A (2018) J Sci Food Agric 98:3571–3579Google Scholar
  88. 88.
    Mateos R, Vera S, Díez-Pascual AM, San Andrés MP (2017) J Food Compos Anal 62:223–230Google Scholar
  89. 89.
    Keramat A, Zare-Dorabei R (2017) Ultrason Sonochem 38:421–429Google Scholar
  90. 90.
    Sricharoen P, Limchoowong N, Areerob Y, Nuengmatcha P, Techawongstien S, Chanthai S (2017) Ultrason Sonochem 37:83–93Google Scholar
  91. 91.
    Zhang Y, Zhou H, Zhang ZH, Wu XL, Chen WG, Zhu Y, Fang C-F, Zhao YG (2017) J Chromatogr A 1489:29–38Google Scholar
  92. 92.
    Wang Y, Wen Y, Ling YC (2017) Food Anal Methods 10:210–218Google Scholar
  93. 93.
    Pourjavid MR, Arabieh M, Yousefi SR, Sehat AA (2016) Microchem J 129:259–267Google Scholar
  94. 94.
    Hou X, Guo Y, Liang X, Wang X, Wang L, Wang L, Liu X (2016) Talanta 153:392–400Google Scholar
  95. 95.
    Khan M, Yilmaz E, Sevinc B, Sahmetlioglu E, Shah J, Jan MR, Soylak M (2016) Talanta 146:130–137Google Scholar
  96. 96.
    Bahar S, Karami F (2015) J Iran Chem Soc 12:2213–2220Google Scholar
  97. 97.
    Zhang Q, Li G, Xiao X (2015) Talanta 131:127–135Google Scholar
  98. 98.
    Zhang X, Ma X, Li X, Li C, Wang R, Chen M (2018) Water Air Soil Pollut 229:270–277Google Scholar
  99. 99.
    Amiri A, Baghayeri M, Sedighi M (2018) Microchim Acta 185:393–400Google Scholar
  100. 100.
    Lou C, Wu C, Zhang K, Guo D, Jiang L, Lu Y, Zhu Y (2018) J Chromatogr A 1550:45–56Google Scholar
  101. 101.
    Seidi S, Majd M (2017) J Iran Chem Soc 14:1195–1206Google Scholar
  102. 102.
    Liu L, Tang W, Tang B, Han D, Row KH, Zhu T (2017) J Sep Sci 40:1887–1895Google Scholar
  103. 103.
    Nodeh HR, Ibrahim WAW, Kamboh MA, Sanagi MM (2017) Chemosphere 166:21–30Google Scholar
  104. 104.
    Naing NN, Li SFY, Lee HK (2016) J Chromatogr A 1427:29–36Google Scholar
  105. 105.
    Sereshti H, Farahani MV, Baghdadi M (2016) Talanta 146:662–669Google Scholar
  106. 106.
    Mahpishanian S, Sereshti H (2016) J Chromatogr A 1443:43–53Google Scholar
  107. 107.
    Wang X, Wang H, Lu M, Ma X, Huang P, Lu X, Du X (2016) J Sep Sci 39:1734–1741Google Scholar
  108. 108.
    Chen Y, Cao S, Zhang L, Xi C, Li X, Chen Z, Wang G (2016) J Chromatogr A 1448:9–19Google Scholar
  109. 109.
    Kakhki RM (2015) J Incl Phenom Macrocycl Chem 82:301–310Google Scholar
  110. 110.
    Xu Y, Jin J, Li X, Han Y, Meng H, Wu J, Zhang X (2016) J Sep Sci 39:3647–3654Google Scholar
  111. 111.
    Bakheet AAA, Zhu XS (2017) J Fluoresc 27:1087–1094Google Scholar
  112. 112.
    Chen S, Qin X, Gu W, Zhu X (2016) Talanta 161:325–332Google Scholar
  113. 113.
    Mahpishanian S, Sereshti H (2017) J Chromatogr A 1485:32–43Google Scholar
  114. 114.
    Li N, Chen J, Shi YP (2016) J Chromatogr A 1441:24–33Google Scholar
  115. 115.
    Sajid M (2017) Trends Anal Chem 98:114–127Google Scholar
  116. 116.
    Li Y, Yang J, Huang C, Wang L, Wang J, Chen J (2015) J Chromatogr A 1392:28–36Google Scholar
  117. 117.
    Sajid M, Nazal MK, Baig N, Osman AM (2018) Sep Purif Technol 191:400–423Google Scholar
  118. 118.
    Kim KJ, Park JW (2017) J Mater Sci 52:843–857Google Scholar
  119. 119.
    Alinezhad H, Amiri A, Tarahomi M, Maleki B (2018) Talanta 183:149–157Google Scholar
  120. 120.
    Lotfi Z, Mousavi HZ, Sajjadi SM (2017) Microchim Acta 184:4503–4512Google Scholar
  121. 121.
    Li Y, Huang C, Yang J, Peng J, Jin J, Ma H, Chen J (2017) J Chromatogr A 1527:10–17Google Scholar
  122. 122.
    Sanagi MM, Chong MH, Endud S, Ibrahim WAW, Ali I (2015) Micropor Mesopor Mater 213:68–77Google Scholar
  123. 123.
    Chong MH, Sanagi MM, Endud S, Ibrahim WAW, Lau SC, Alharbi OM, Ali I (2018) Environ Technol Innov 10:102–110Google Scholar
  124. 124.
    Behbahani M, Gorji T, Mahyari M, Salarian M, Bagheri A, Shaabani A (2014) Food Anal Methods 7:957–966Google Scholar
  125. 125.
    Krawczyk M, Akbari S, Jeszka-Skowron M, Pajootan E, Fard FS (2016) J Anal At Spectrom 31:1505–1514Google Scholar
  126. 126.
    Pichon V, Delaunay-Bertoncini N, Hennion MC (2002) Compr Anal Chem 37:1081–1100Google Scholar
  127. 127.
    Chen L, Wang X, Lu W, Wu X, Li J (2016) Chem Soc Rev 45:2137–2211Google Scholar
  128. 128.
    Jia M, Zhang Z, Li J, Ma X, Chen L, Yang X (2018) Trends Anal Chem 106:190–201Google Scholar
  129. 129.
    Hu Y, Pan J, Zhang K, Lian H, Li G (2013) Trends Anal Chem 43:37–52Google Scholar
  130. 130.
    He J, Song L, Chen S, Li Y, Wei H, Zhao D, Gu K, Zhang S (2015) Food Chem 187:331–337Google Scholar
  131. 131.
    Behbahani M, Hassanlou PG, Amini MM, Moazami HR, Abandansari HS, Bagheri A, Zadeh SH (2015) Food Anal Methods 8:558–568Google Scholar
  132. 132.
    Qi X, Gao S, Ding G, Tang AN (2017) Talanta 162:345–353Google Scholar
  133. 133.
    Guo P, Yuan X, Zhang J, Wang B, Sun X, Chen X, Zhao L (2018) Anal Bioanal Chem 410:373–389Google Scholar
  134. 134.
    Rozaini MNH, Yahaya N, Saad B, Kamaruzaman S, Hanapi NSM (2017) Talanta 171:242–249Google Scholar
  135. 135.
    Rodriguez-Fernandez R, Pena-Vazquez E, Bermejo-Barrera P (2016) At Spectosc 37:238–243Google Scholar
  136. 136.
    Hu X, Wu X, Yang F, Wang Q, He C, Liu S (2016) Talanta 148:29–36Google Scholar
  137. 137.
    Özer ET, Osman B, Yazıcı T (2017) J Chromatogr A 1500:53–60Google Scholar
  138. 138.
    Song YP, Zhang L, Wang GN, Liu JX, Liu J, Wang JP (2017) Food Control 82:233–242Google Scholar
  139. 139.
    Thongchai W, Fukngoen P (2018) J Pharm Anal 8:60–68Google Scholar
  140. 140.
    Xu X, Wang M, Wu Q, Xu Z, Tian X (2017) Polymers 9:360–372Google Scholar
  141. 141.
    Kakavandi MG, Behbahani M, Omidi F, Hesam G (2017) Food Anal Methods 10:2454–2466Google Scholar
  142. 142.
    da Silva MC, Orlando RM, Faria AF (2016) J Chromatogr A 1461:27–34Google Scholar
  143. 143.
    Khan S, Bhatia T, Trivedi P, Satyanarayana GNV, Mandrah K, Saxena PN, Mudiam MKR, Roy SK (2016) Food Chem 199:870–875Google Scholar
  144. 144.
    Osório MV, Marques SS, Oliveira HM, Barreiros L, Segundo MA (2016) J Food Compos Anal 45:141–146Google Scholar
  145. 145.
    Xiao X, Yan K, Xu X, Li G (2015) Talanta 138:40–45Google Scholar
  146. 146.
    Lin S, Gan N, Cao Y, Chen Y, Jiang Q (2016) J Chromatogr A 1446:34–40Google Scholar
  147. 147.
    Khodadadi M, Malekpour A, Mehrgardi MA (2018) J Chromatogr A 1564:85–93Google Scholar
  148. 148.
    Peng D, Feng L, Pan Y, Wang Y, Chen D, Wang J, Yuan Z (2016) Food Chem 197:821–828Google Scholar
  149. 149.
    Peng D, Liao F, Pan Y, Chen D, Liu Z, Wang Y, Yuan Z (2016) Food Chem 202:141–148Google Scholar
  150. 150.
    Dong G, Pan Y, Wang Y, Ahmed S, Liu Z, Peng D, Yuan Z (2018) Food Chem 247:8–15Google Scholar
  151. 151.
    Peng H, Luo M, Xiong H, Yu N, Ning F, Fan J, Zeng Z, Li J, Chen L (2016) J Chromatogr A 1442:1–11Google Scholar
  152. 152.
    Wu X, Wang X, Lu W, Wang X, Li J, You H, Xiong H, Chen L (2016) J Chromatogr A 1435:30–38Google Scholar
  153. 153.
    Liang R, Zhao Y, Su Y, Qin W (2015) Talanta 144:115–121Google Scholar
  154. 154.
    Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L (2018) ACS Appl Mater Interfaces 10:4140–4150Google Scholar
  155. 155.
    Xiong H, Wu X, Lu W, Fu J, Peng H, Li J, Wang X, Xi H, Chen L (2018) Talanta 176:187–194Google Scholar
  156. 156.
    Fu J, Wang X, Li J, Ding Y, Chen L (2016) RSC Adv 6(50):44087–44095Google Scholar
  157. 157.
    Yang W, Muhammad T, Yigaimu A, Muhammad K, Chen L (2018) J Sep Sci 41:4185–4193Google Scholar
  158. 158.
    Cai X, Li J, Zhang Z, Yang F, Dong R, Chen L (2013) ACS Appl Mater Interfaces 6:305–313Google Scholar
  159. 159.
    Lu W, Wang X, Wu X, Liu D, Li J, Chen L, Zhang X (2017) J Chromatogr A 1483:30–39Google Scholar
  160. 160.
    Li J, Dong R, Wang X, Xiong H, Xu S, Shen D, Song X, Chen L (2015) RSC Adv 5:10611–10618Google Scholar
  161. 161.
    Lu W, Ming W, Zhang X, Chen L (2016) Electrophoresis 37:2487–2495Google Scholar
  162. 162.
    de Faria HD, de Carvalho Abrão LC, Santos MG, Barbosa AF, Figueiredo EC (2017) Anal Chimi Acta 959:43–65Google Scholar
  163. 163.
    Huang W, Wang P, Jiang P, Dong X, Lin S (2018) J Chromatogr A 1573:59–65Google Scholar
  164. 164.
    Zhang Y, Lin S, Jiang P, Zhu X, Ling J, Zhang W, Dong X (2014) J Chromatogr A 1337:17–21Google Scholar
  165. 165.
    de Lima MM, Vieira AC, Martins I, Boralli VB, Borges KB, Figueiredo EC (2016) Food Chem 197:7–13Google Scholar
  166. 166.
    Karakose A, Sanli S, Sanli N, Bulduk I (2015) Czech J Food Sci 33:52–57Google Scholar
  167. 167.
    Sugitate K, Saka M (2015) J Pest Sci 40:87–91Google Scholar
  168. 168.
    Wang C, Zhang Z, Shen Y, Tian Z, Xu D, Han C (2015) Food Chem 169:150–155Google Scholar
  169. 169.
    Chen D, Zhao Y, Miao H, Wu Y (2015) Talanta 134:144–152Google Scholar
  170. 170.
    Fernandes PJ, Barros N, Santo JL, Câmara JS (2015) Food Anal Methods 8:841–856Google Scholar
  171. 171.
    Campone L, Piccinelli AL, Celano R, Russo M, Valdés A, Ibáñez C, Rastrelli L (2015) Anal Bioanal Chem 407:2899–2911Google Scholar
  172. 172.
    Mijangos L, Bizkarguenaga E, Prieto A, Fernández LA, Zuloaga O (2015) J Chromatogr A 1389:8–18Google Scholar
  173. 173.
    Drzymala SS, Weiz S, Heinze J, Marten S, Prinz C, Zimathies A, Garbe LA, Koch M (2015) Anal Bioanal Chem 407:3489–3497Google Scholar
  174. 174.
    Surma M, Wiczkowski W, Cieślik E, Zieliński H (2015) Microchem J 121:150–156Google Scholar
  175. 175.
    Lashgari M, Basheer C, Lee HK (2015) Talanta 141:200–206Google Scholar
  176. 176.
    Farahani MD, Shemirani F, Ramandi NF, Gharehbaghi M (2015) Food Anal Methods 8:1979–1989Google Scholar
  177. 177.
    Guo M, Shi T, Duan Y, Zhu J, Li J, Cao Y (2015) J Food Compos Anal 42:84–90Google Scholar
  178. 178.
    Walorczyk S, Drożdżyński D, Kierzek R (2015) J Chromatogr A 1412:22–32Google Scholar
  179. 179.
    Jiao Z, Zhu D, Yao W (2015) Food Anal Methods 8:2163–2168Google Scholar
  180. 180.
    Xie J, Peng T, Zhu A, He J, Chang Q, Hu X, Chen H, Fan C, Jiang W, Chen M, Li J, Ding S, Jiang H (2015) J Chromatogr B 1002:19–29Google Scholar
  181. 181.
    Gomez FJ, Hernández IG, Cerutti S, Silva MF (2015) Microchem J 123:22–27Google Scholar
  182. 182.
    Zhang C, Li G, Zhang Z (2015) J Chromatogr A 1419:1–9Google Scholar
  183. 183.
    Regueiro J, Wenzl T (2015) J Chromatogr A 1422:230–238Google Scholar
  184. 184.
    Omidi F, Behbahani M, Bojdi MK, Shahtaheri SJ (2015) J Magn Magn Mater 395:213–220Google Scholar
  185. 185.
    Rajabi M, Sabzalian S, Barfi B, Arghavani-Beydokhti S, Asghari A (2015) J Chromatogr A 1425:42–50Google Scholar
  186. 186.
    Castillo-García ML, Aguilar-Caballos MP, Gómez-Hens A (2015) J Chromatogr A 1425:73–80Google Scholar
  187. 187.
    Bagheri H, Yamini Y, Safari M, Asiabi H, Karimi M, Heydari A (2016) J Supercrit Fluids 107:571–580Google Scholar
  188. 188.
    Campone L, Piccinelli AL, Celano R, Pagano I, Russo M, Rastrelli L (2016) J Chromatogr A 1428:212–219Google Scholar
  189. 189.
    Chai W, Wang H, Zhang Y, Ding G (2016) Talanta 149:13–20Google Scholar
  190. 190.
    Qi P, Liang Z-A, Xiao J, Liu J, Zhou Q-Q, Zheng C-H, Luo L-N, Lin Z-H, Zhu F, Zhang X-W (2016) J Chromatogr A 1437:25–36Google Scholar
  191. 191.
    Ha J, Song G, Ai LF, Li JC (2016) J Chromatogr B 1017:187–194Google Scholar
  192. 192.
    Chen J, Zhu X (2016) Food Chem 200:10–15Google Scholar
  193. 193.
    Samadi A, Amjadi M (2016) J Appl Spectrosc 83:422–428Google Scholar
  194. 194.
    Lehotay SJ, Han L, Sapozhnikova Y (2016) Chromatographia 79:1113–1130Google Scholar
  195. 195.
    Tuzen M, Sahiner S, Hazer B (2016) Food Chem 210:115–120Google Scholar
  196. 196.
    Armenta S, de la Guardia M, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA (2016) Anal Bioanal Chem 408:8559–8567Google Scholar
  197. 197.
    Rejczak T, Tuzimski T (2017) Food Chem 217:225–233Google Scholar
  198. 198.
    Ji W, Zhang M, Wang T, Wang X, Zheng Z, Gong J (2017) Talanta 165:18–26Google Scholar
  199. 199.
    Pastor-Belda M, Viñas P, Campillo N, Hernández-Córdoba M (2017) Food Chem 221:76–81Google Scholar
  200. 200.
    Medellín-Martínez MF, Luna-Zavala I, Martínez-Delgado M, Pérez-Urizar JT, Ramírez-Telles JA, Patiño-Rodríguez O (2018) Food Anal Methods 11:2561–2568Google Scholar
  201. 201.
    Wang X, Yang S, Li Y, Zhang J, Jin Y, Zhao W, Zhang Y, Huang J, Wang P, Wu C, Zhou J (2018) J Chromatogr A 1542:28–36Google Scholar
  202. 202.
    Floriano L, Ribeiro LC, Saibt N, Bandeira NM, Prestes OD, Zanella R (2018) J Braz Chem Soc 29:602–608Google Scholar
  203. 203.
    Vakh C, Alaboud M, Lebedinets S, Korolev D, Postnov V, Moskvin L, Osmolovskaya O, Bulatov A (2018) Anal Chim Acta 1001:59–69Google Scholar
  204. 204.
    Deng F, Yu H, Pan X, Hu G, Wang Q, Peng R, Tan L, Yang Z (2018) J Chromatogr A 1538:54–59Google Scholar
  205. 205.
    Gu S, Chen N, Zhou Y, Zhao C, Zhan L, Qu L, Cao C, Han L, Deng X, Ding T, Song C, Dinge Y (2018) Food Control 84:89–96Google Scholar
  206. 206.
    Qi F, Jian N, Qian L, Cao W, Xu Q, Li J (2017) Anal Bioanal Chem 409:5697–5709Google Scholar
  207. 207.
    Li R, Wu M (2017) Food Anal Methods 10:3753–3762Google Scholar
  208. 208.
    Figueira JA, Pereira JA, Câmara JS (2017) Food Anal Methods 10:2507–2517Google Scholar
  209. 209.
    Zhou NZ, Liu P, Su XC, Liao YH, Lei NS, Liang YH, Zhou SH, Lin WS, Chen J, Feng YQ, Tang Y (2017) Anal Chim Acta 970:38–46Google Scholar
  210. 210.
    Giovannoli C, Spano G, Di Nardo F, Anfossi L, Baggiani C (2017) Toxins 9:174–183Google Scholar
  211. 211.
    Saxena SK, Karipalli AR, Krishnan AA, Rangasamy R, Malekadi P, Singh DP, Vasu V, Singh VK (2017) J AOAC Int 100:598–602Google Scholar
  212. 212.
    Abdolmohammad-Zadeh H, Salimi A (2018) Microchim Acta 185:343-1–343-8Google Scholar
  213. 213.
    Bagtash M, Yamini Y, Tahmasebi E, Zolgharnein J, Dalirnasab Z (2016) Microchim Acta 183:449–456Google Scholar
  214. 214.
    Yamini Y, Safari M (2018) Microchem J 143:503–511Google Scholar
  215. 215.
    Qi F, Qian L, Liu J, Li X, Lu L, Xu Q (2016) J Chromatogr A 1460:24–32Google Scholar
  216. 216.
    Leal PM, Alonso EV, Guerrero ML, Cordero MS, Pavón JC, de Torres AG (2018) Talanta 184:251–259Google Scholar
  217. 217.
    Kim C, Ryu HD, Chung EG, Kim Y (2018) J Chromatogr B 1084:158–165Google Scholar
  218. 218.
    Chau HTC, Kadokami K, Ifuku T, Yoshida Y (2017) Environ Sci Pollut Res 24:26396–26409Google Scholar
  219. 219.
    Zhu S, Chen B, He M, Huang T, Hu B (2017) Talanta 171:213–219Google Scholar
  220. 220.
    Baghban N, Yilmaz E, Soylak M (2017) J Mol Liq 234:260–267Google Scholar
  221. 221.
    Guerrero ML, Cordero MS, Alonso EV, de Torres AG, Pavón JC (2017) Microchem J 132:274–279Google Scholar
  222. 222.
    Yao B, Lian L, Pang W, Yin D, Chan SA, Song W (2016) Chemosphere 160:208–215Google Scholar
  223. 223.
    Archana G, Dhodapkar R, Kumar A (2016) Environ Monit Assess 188:512–521Google Scholar
  224. 224.
    Tetzner NF, Maniero MG, Rodrigues-Silva C, Rath S (2016) J Chromatogr A 1452:89–97Google Scholar
  225. 225.
    Zhang S, Luo H, Zhang Y, Li X, Liu J, Xu Q, Wang Z (2016) Microchem J 126:25–31Google Scholar
  226. 226.
    Ghani M, Maya F, Cerdà V (2016) RSC Adv 6:48558–48565Google Scholar
  227. 227.
    Deeb AA, Schmidt TC (2016) Anal Bioanal Chem 408:4219–4232Google Scholar
  228. 228.
    Habila MA, Al-Othman ZA, El-Toni AM, Al-Tamrah SA, Soylak M, Labis JP (2017) Microchim Acta 184:2645–2651Google Scholar
  229. 229.
    Yang X, Zhou L, Tan Y, Shi X, Zhao Z, Nie D, Zhao C, Liu H (2017) Toxins 9:206–215Google Scholar
  230. 230.
    Nekouei F, Kargarzadeh H, Nekouei S, Keshtpour F, Makhlouf ASH (2017) Anal Bioanal Chem 409:1079–1092Google Scholar
  231. 231.
    Shamsipur M, Yazdanfar N, Ghambarian M (2016) Food Chem 204:289–297Google Scholar
  232. 232.
    Kaczyński P, Łozowicka B, Jankowska M, Hrynko I (2016) Talanta 152:127–136Google Scholar
  233. 233.
    Golshaei R, Shemirani F, Farahani MD (2015) J Anal Chem 70:310–315Google Scholar
  234. 234.
    Heub S, Tscharner N, Monnier V, Kehl F, Dittrich PS, Follonier S, Barbe L (2015) J Chromatogr A 1381:22–28Google Scholar
  235. 235.
    Custodio-Mendoza JA, Lorenzo RA, Valente IM, Almeida PJ, Lage MA, Rodrigues JA, Carro AM (2018) J Chromatogr A 1548:19–26Google Scholar
  236. 236.
    Hao Z, Xiao Y, Jiang L, Bai W, Huang W, Yuan L (2018) Food Anal Methods 11:589–597Google Scholar
  237. 237.
    Man Y, Shu M, Wang D, Luan F, Liu H, Gao Y (2016) Food Anal Methods 9:3025–3031Google Scholar
  238. 238.
    Li J, Liu J, Lu W, Gao F, Wang L, Ma J, Li H, Li C, Chen L (2018) Electrophoresis 39:1763–1770Google Scholar
  239. 239.
    Le VNH, Zhao Y, Cho CW, Na M, Quan KT, Kim JH, Huwang SY, Kim SW, Kim KT, Kang JS (2018) J Chromatogr B 1102:152–158Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and Technology, Faculty of Food Industry and AgricultureStandard Research Institute (SRI)KarajIran
  2. 2.Department of Chemistry, Faculty of SciencesTarbiat Modares UniversityTehranIran
  3. 3.Civil-Environmental Engineering Division, College of EnvironmentUoEKarajIran

Personalised recommendations