Metal–Organic Frameworks in Solid-Phase Extraction Procedures for Environmental and Food Analyses

  • Priscilla Rocío-Bautista
  • Veronica TermopoliEmail author
Part of the following topical collections:
  1. Recent Trends in Solid-Phase Extraction for Environmental, Food and Biological Sample Preparation


Environmental and food analysis usually require the use of sample preparation steps, with significant utilization of solid-phase extraction techniques. This review article covers recent trends in the use of metal–organic frameworks (MOFs) as novel sorbents, with particular emphasize on miniaturized methods to follow green analytical chemistry principles. Thus, the use of MOFs in miniaturized solid-phase extraction (µSPE), performed in static off-line and on-line modes, and solid-phase microextraction (SPME), including the on-line procedures of in-tube and on-disk approaches, will be described with particular emphasis on the specific applications.


Metal–organic frameworks Static solid-phase microextraction Miniaturized techniques Sample preparation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, Helmy R, Schafer W, Cuff J, Pirzada Z, Zhou L (2010) Greening analytical chromatography. Trends Anal Chem 29:667–680Google Scholar
  2. 2.
    Filippou O, Bitas D, Samanidou V (2017) Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J Chromatogr B 1043:44–62Google Scholar
  3. 3.
    Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal Chem 50:78–84Google Scholar
  4. 4.
    Ludwig JK (2017) Green chemistry: an introductory text. Green Chem Lett Rev 10:30–31Google Scholar
  5. 5.
    Namieśnik J (1999) Pro-ecological education: Chemical faculty of the Technical University of Gdańsk, Poland. Environ Sci Pollut Res 6:243–244Google Scholar
  6. 6.
    Płotka J, Tobiszewski M, Sulej AM, Kupsk M, Górecki T, Namieśnik T (2013) Green chromatography. J Chromatogr A 1307:1–20Google Scholar
  7. 7.
    Namieśnik J (2000) Trends in environmental analytics and monitoring. Crit Rev Anal Chem 30:221–269Google Scholar
  8. 8.
    Wen Y, Chen L, Li J, Liu D, Chen L (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Anal Chem 59:26–41Google Scholar
  9. 9.
    Tang S, Zhang H, Lee HK (2016) Advances in sample extraction. Anal Chem 88:228–249Google Scholar
  10. 10.
    Płotka-Wasylka J, Szczepanska N, de la Guardia M, Namieśnik J (2015) Miniaturized solid-phase extraction techniques. Trends Anal Chem 73:19–38Google Scholar
  11. 11.
    Poole CF (2012) Principles and practice of solid-phase extraction. Elsevier Inc, DetroitGoogle Scholar
  12. 12.
    Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (Part I). Trends Anal Chem 80:641–654Google Scholar
  13. 13.
    Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (Part I). Trends Anal Chem 80:655–667Google Scholar
  14. 14.
    Poole CF, Gunatilleka AD, Sethuraman R (2000) Contributions of theory to method development in solid-phase extraction. J Chromatogr A 885:17–39Google Scholar
  15. 15.
    Yanga L, Said R, Abdel-Rehim M (2017) Sorbent, device, matrix and application in microextraction by packedsorbent (MEPS): a review. J Chromatogr B 1043:33–43Google Scholar
  16. 16.
    Płotka-Wasylka J, Szczepańska N, de la Guardia M (2016) Modern trends in solid phase extraction: New sorbent media. Trends Anal Chem 77:23–43Google Scholar
  17. 17.
    Kędziora K, Wasiak W (2017) Extraction media used in needle trap devices-progress in development and application. J Chromatogr A 1505:1–17Google Scholar
  18. 18.
    Sajid M (2017) Porous membrane protected micro-solid-phase extraction: a review of features, advancements and applications. Anal Chim Acta 965:36–53Google Scholar
  19. 19.
    Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices A critical review. Anal Chim Acta 677:3–18Google Scholar
  20. 20.
    Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148Google Scholar
  21. 21.
    Moliner-Martinez Y, Herráez-Hernández R, Verdú-Andrés J, Molins-Legua C, Campíns-Falcó P (2015) Recent advances of in-tube solid-phase microextraction. Trends Anal Chem 71:205–213Google Scholar
  22. 22.
    David F, Sandra P (2007) Stir bar sorptive extraction for trace analysis. J Chromatogr A 1152:54–69Google Scholar
  23. 23.
    Huang Z, Lee HK (2012) Materials-based approaches to minimizing solvent usage in analytical sample preparation. Trends Anal Chem 39:228–244Google Scholar
  24. 24.
    Płotka-Wasylka J, Szczepaska N, de la Guardia M, Namieśnik J (2016) Modern trends in solid phase extraction: New sorbent media. Trends Anal Chem 77:23–43Google Scholar
  25. 25.
    Augusto F, Carasek E, Gomes R, Silva C, Rivellino SR, Batista AD, Martendal E (2010) New sorbents for extraction and microextraction techniques. J Chromatogr A 1217:2533–2542Google Scholar
  26. 26.
    Maya F, Estela JM, Cerdà V (2010) Interfacing on-line solid phase extraction with monolithic column multi-syringe chromatography and chemiluminescence detection: an effective tool for fast, sensitive and selective determination of thiazide diuretics. Talanta 80:1333–1340Google Scholar
  27. 27.
    Buszewski B, Szultka M (2012) Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem 42:198–213Google Scholar
  28. 28.
    Alberti G, Amendola V, Pesavento M, Biesuz R (2012) Beyond the synthesis of novel solid phases: review on modelling of sorption phenomena. Coord Chem Rev 256:28–45Google Scholar
  29. 29.
    Poole CF (2003) New trends in solid-phase extraction. Trends Anal Chem 22:362–373Google Scholar
  30. 30.
    Zhao L, Qin H, Wu R, Zou H (2012) Recent advances of mesoporous materials in sample preparation. J Chromatogr A 1228:193–204Google Scholar
  31. 31.
    Walcarius A, Etienne M, Lebeau B (2003) Rate of access to the binding sites in organically modified silicates. 2. ordered mesoporous silicas grafted with amine or thiol groups. Chem Mater 15:2161–2173Google Scholar
  32. 32.
    Mehdinia A, Aziz-Zanjani MO (2013) Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction. Trends Anal Chem 42:205–215Google Scholar
  33. 33.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240Google Scholar
  34. 34.
    Zhang SL, Du Z, Li GK (2011) Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction. Anal Chem 83:7531–7541Google Scholar
  35. 35.
    Gutiérrez-Serpa A, Napolitano-Tabares PI, Pino V, Jiménez-Moreno F, Jiménez-Abizanda AI (2018) Silver nanoparticles supported onto a stainless steel wire for direct-immersion solid-phase microextraction of polycyclic aromatic hydrocarbons prior to their determination by GC-FID. Microchim Acta 185:341–351Google Scholar
  36. 36.
    Pyrzynska KK (2017) Nanomaterials in extraction techniques. In: Hussain CM, Kharisov B (eds) Advanced environmental analysis: applications of nanomaterials, vol 1, 1st edn. The Royal Society of Chemistry, Croydon, UK, pp 284–305Google Scholar
  37. 37.
    Hu B, He M, Chen B (2015) Nanometer-sized materials for solid-phase extraction of trace elements. Anal Bioanal Chem 407:2685–2710Google Scholar
  38. 38.
    Liang P, Qin YC, Hu B, Li CX, Peng TY, Jiang ZC (2000) Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresen J Anal Chem 368(6):638–640Google Scholar
  39. 39.
    Lashgari M, Yamini Y (2019) An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 191:283–306Google Scholar
  40. 40.
    Lashgari M, Yamini Y (2017) Fiber-in-tube solid-phase microextraction of caffeine as a molecular tracer in wastewater by electrochemically deposited layered double hydroxide. J Sep Sci 41:2393–2400Google Scholar
  41. 41.
    Rocío-Bautista P, Gutiérrez-Serpa A, Pino V (2017) Solid-phase microextraction coatings based on tailored materials: metal-organic frameworks and molecular imprinted polymers. In: Tiwari A, Li L, Yang Q (eds) Advanced coatings materials, 1st edn. Scrivener Publishing LLC, Massachusetts, USA, pp 329–360Google Scholar
  42. 42.
    Ding X, Heiden PA (2014) Recent Developments in Molecularly Imprinted Nanoparticles by Surface Imprinting Techniques. Macromol Mater Eng 299:268–282Google Scholar
  43. 43.
    Pacheco-Fernández I, Gutiérrez-Serpa A, Rocío-Bautista, Pino V (2017) Molecularly imprinted polymers as promising sorbents in spme applications. In: Verreau W, Baril G (eds) Solid-phase microextraction, advances in research and applications, 1st edn. NovaScience, New YorkGoogle Scholar
  44. 44.
    Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res 38:176–182Google Scholar
  45. 45.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2005) Reticular synthesis and the design of new materials. Nature 423:705–715Google Scholar
  46. 46.
    Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc 117:10401–10402Google Scholar
  47. 47.
    Li P, Cheng FF, Xiong WW, Zhang O (2018) New synthetic strategies to prepare metal–organic frameworks. Inorg Chem Front 5:2693–2708Google Scholar
  48. 48.
    Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen SBT, Yazaydın AO, Hupp JT (2012) Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021Google Scholar
  49. 49.
    Liu B, Vellingiri K, Jo SH, Kumar P, Ok YS, Kim KH (2018) Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res 11(9):4441–4467Google Scholar
  50. 50.
    Rocío-Bautista P, Pino V, Ayala JH, Ruiz-Pérez C, Vallcorba O, Afonso AM, Pasán J (2018) A green metal–organic framework to monitor water contaminants. RSC Adv 8:31304–31310Google Scholar
  51. 51.
    Hafizovic J, Bjørgen M, Olsbye U, Dietzel PDC, Bordiga S, Prestipino C, Lamberti C, Lillerud KP (2007) The inconsistency in adsorption properties and powder XRD Data of MOF-5 Is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc 129:3612–3620Google Scholar
  52. 52.
    Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC (2018) Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater 30:1704303–1704303Google Scholar
  53. 53.
    Rocío-Bautista P, Pacheco-Fernández I, Pasán J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?—a review. Anal Chim Acta 939:24–41Google Scholar
  54. 54.
    Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM (2017) Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. Trends Anal Chem 90:114–134Google Scholar
  55. 55.
    Hashemi B, Zohrabi P, Raza N, Kim KH (2017) Metal organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends Anal Chem 97:65–82Google Scholar
  56. 56.
    Manousi N, Zachariadis GA, Deliyanni EA, Samanidou VF (2018) Applications of Metal-Organic Frameworks in Food Sample Preparation. Molecules 23:2896–2917Google Scholar
  57. 57.
    Dhaka S, Kumar R, Deep A, Kurade MB, Ji SW, Jeon BH (2019) Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord Chem Rev 380:330–352Google Scholar
  58. 58.
    Kumar P, Vellingiri K, Kim KH, Brown RJC, Manos MJ (2017) Modern progress in metal-organic frameworks and their composites for diverse applications. Micropor Mesopor Mat 253:251–265Google Scholar
  59. 59.
    Pettinari C, Marchetti F, Mosca N, Tosi G, Drozdov A (2017) Application of metal–organic frameworks. Polym Int 66:731–744Google Scholar
  60. 60.
    Sigma Aldrich (2018) SPME Fiber Assemblies. Accesses Nov 2018
  61. 61.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic framework. Science 341:1230444Google Scholar
  62. 62.
    Rocío-Bautista P, Martínez-Benito C, Pino V, Pasán J, Ayala JH, Ruiz-Pérez C, Afonso AM (2015) The metal–organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine. Talanta 139:13–20Google Scholar
  63. 63.
    Yang Q, Liu D, Zhong C, Li JR (2013) Development of computational methodologies for metal–organic frameworks and their application in gas separations. Chem Rev 113:8261–8323Google Scholar
  64. 64.
    Qi C, Cai Q, Zhao P, Jia X, Lu N, He L, Hou X (2016) The metal-organic framework MIL-101(Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: application to a pharmacokinetic study. J Chromatogr A 1449:30–38Google Scholar
  65. 65.
    Rocío-Bautista P, Pino V, Pasán J, López-Hernández I, Ayala JH, Ruiz-Pérez C, Afonso AM (2018) Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography. Talanta 179:775–783Google Scholar
  66. 66.
    Taima-Mancera I, Rocío-Bautista P, Pasán J, Ayala JH, Ruiz-Pérez C, Afonso AM, Lago AB, Pino V (2018) Influence of ligand functionalization of UiO-66-based metal-organic frameworks when used as sorbents in dispersive solid-phase analytical microextraction for different aqueous organic pollutants. Molecules 23:2869–2883Google Scholar
  67. 67.
    Salarian M, Ghanbarpour A, Behbahani M, Bagheri S, Bagheri A (2014) A metal-organic framework sustained by a nanosized Ag12 cuboctahedral node for solid-phase extraction of ultra-traces of lead(II) ions. Microchim Acta 181:999–1007Google Scholar
  68. 68.
    Dai X, Jia X, Zhao P, Wang T, Wang J, Huang P, He L, Hou H (2016) A combined experimental/computational study on metal-organic framework MIL-101(Cr) as a SPE sorbent for the determination of sulphonamides in environmental water samples coupling with UPLC-MS/MS. Talanta 154:581–588Google Scholar
  69. 69.
    Li Y, Zhang X, Kong F, Qiao X, Xu Z (2017) Molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for the determination of trace trichlorfon and monocrotophos residues in fruits deqing. Food Anal Methods 10:1284–1292Google Scholar
  70. 70.
    Zhang X, Wang P, Han Q, Li H, Wang T, Ding M (2018) Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples. J Sep Sci 41:1856–1863Google Scholar
  71. 71.
    Zhang X, Liang Q, Han Q, Wan W, Ding M (2106) Metal-organic frameworks@graphene hybrid aerogel for solid-phase extraction of nonsteroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 141:4219–4226Google Scholar
  72. 72.
    Yang S, Chen C, Yan Z, Cai Q, Yao S (2013) Evaluation of metal-organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters. J Sep Sci 36:1283–1290Google Scholar
  73. 73.
    Kahkha MRR, Daliran S, Oveisi AR, Kaykhaii M, Sepehri Z (2017) The mesoporous porphyrinic zirconium metal-organic framework for pipette-tip solid-phase extraction of mercury from fish samples followed by cold vapor atomic absorption spectrometric determination. Food Anal Methods 10:2175–2184Google Scholar
  74. 74.
    Rio M, Palomino-Cabello C, Gonzalez V, Maya F, Parra JB, Cerdà V, Turnes-Palomino G (2016) Metal oxide assisted preparation of core–shell beads with dense metal–organic framework coatings for the enhanced extraction of organic pollutants. Chem Eur J 22:11770–11777Google Scholar
  75. 75.
    Zhou YY, Yan XP, Kim KN, Wang SW, Liu MG (2006) Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials. J Chromatogr A 1116:172–178Google Scholar
  76. 76.
    Liu Y, Hu J, Li Y, Li XS, Wang ZL (2016) Metal-organic framework MIL-101 as sorbent based on double-pumps controlled on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of flavonoids in environmental water samples. Electrophoresis 00:1–9Google Scholar
  77. 77.
    Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA (2014) Flexible metal–organic frameworks. Chem Soc Rev 43:6062–6096Google Scholar
  78. 78.
    Biserčić MS, Marjanović B, Vasiljević BN, Mentus S, Zasońska BA, Ćirić-Marjanović G (2019) The quest for optimal water quantity in the synthesis of metal-organic framework MOF-5. Micropor Mesopor Mat 278:23–29Google Scholar
  79. 79.
    Huo SH, Yu J, Fu YY, Zho PX (2016) In situ hydrothermal growth of a dual-ligand metal–organic framework film on a stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples. RSC Adv 6:14042–14048Google Scholar
  80. 80.
    Zhang S, Du Z, Li G (2013) Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115:32–39Google Scholar
  81. 81.
    Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP (2009) In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81:9771–9777Google Scholar
  82. 82.
    Zhang Z, Huang Y, Ding W, Li G (2014) Multilayer interparticle linking hybrid MOF-199 for noninvasive enrichment and analysis of plant hormone ethylene. Anal Chem 86:3533–3540Google Scholar
  83. 83.
    Lan H, Salmi LD, Rönkkö T, Parshintsev J, Jussila M, Hartonen K, Kemell M, Riekkola ML (2018) Integrated atomic layer deposition and chemical vapor reaction for the preparation of metal organic framework coatings for solid-phase microextraction Arrow. Anal Chim Acta 1024:93–100Google Scholar
  84. 84.
    Wu YY, Yang CX, Yan XP (2014) Fabrication of metal–organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A 1334:1–8Google Scholar
  85. 85.
    Xie L, Liu S, Han Z, Jiang R, Liu H, Zhu F, Zheng F, Su C, Ouyang G (2015) Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction Fiber. Anal Chim Acta 853:303–310Google Scholar
  86. 86.
    Zhang G, Zang X, Li Z, Wang C, Wang Z (2014) Polydimethylsiloxane/metal-organic frameworks coated fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in river and lake water samples. Talanta 129:600–605Google Scholar
  87. 87.
    Wang G, Lei Y, Song H (2015) Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Talanta 144:369–374Google Scholar
  88. 88.
    Shang HB, Yang CX, Yan XP (2014) Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J Chromatogr A 1357:165–171Google Scholar
  89. 89.
    Li QL, Wang W, Chen XF, Wang ML, Zhao RS (2015) In situ hydrothermal growth of ytterbium-based metal–organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples. J Chromatogr A 1415:11–19Google Scholar
  90. 90.
    Chang N, Gu ZY, Wang HF, Yan XP (2011) Metal-organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes. Anal Chem 83:7094–7101Google Scholar
  91. 91.
    Lan H, Rönkkö T, Parshintsev J, Hartonen K, Gan N, Sakeye M, Sarfraz J, Riekkola ML (2017) Modified zeolitic imidazolate framework-8 as solid-phase microextraction. Arrow coating for sampling of amines in wastewater and food samples followed by gas chromatography-mass spectrometry. J Chromatogry A 1486:76–85Google Scholar
  92. 92.
    Ghani M, Masoum S, Ghoreishi SM, Cerdà V, Maya F (2018) Nanoparticle-templated hierarchically porous polymer/zeolitic imidazolate framework as a solid-phase microextraction coatings. J Chromatogr A 1567:55–63Google Scholar
  93. 93.
    Yu LQ, Yan XP (2013) Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem Comm 49:2142–2144Google Scholar
  94. 94.
    Liu S, Zhou Y, Zheng J, Xu J, Jiang R, Shen Y, Jiang J, Zhu F, Su C, Ouyang G (2015) Isoreticular bio-MOF 100–102 coated solid-phase microextraction fibers for fast and sensitive determination of organic pollutants by the pore structure dominated mechanism. Analyst 140:4384–4387Google Scholar
  95. 95.
    Zhang N, Huang C, Tong P, Feng Z, Wu X (2018) Moisture stable Ni-Zn MOF/g-C3N4 nanoflowers: A highly efficient adsorbent for solid-phase microextraction of PAHs. J Chromatogr A 1556:37–46Google Scholar
  96. 96.
    Shih YH, Kuo YC, Lirio S, Wang KY, Lin CH, Huang HY (2017) A simple approach to enhance the water stability of a metal-organic framework. Chem Eur J 23:42–46Google Scholar
  97. 97.
    Lyu DY, Yang CX, Yan XP (2015) Fabrication of aluminum terephthalate metal-organic framework in corporated polymer monolith for the microextraction of non-steroidal anti-inflammatory drugs in water and urine samples. J Chromatogr A 1393:1–7Google Scholar
  98. 98.
    Ghani M, Picó MFF, Salehinia S, Cabello CP, Maya F, Berlier G, Saraji M, Cerdà V, Palomino GT (2017) Metal-organic framework mixed-matrix disks: Versatile supports for automated solid-phase extraction prior to chromatographic separation. J Chromatogr A 1488:1–9Google Scholar
  99. 99.
    Maya F, Palomino-Cabello C, Clavijo S, Estela JM, Cerdà V, Turnes-Palomino G (2015) Automated growth of metal-organic framework coatings on flow-through functional supports. Chem Commun 51:8169–8172Google Scholar
  100. 100.
    Zhang Z, Yang MJ, Pawliszyn J (1994) Solid-phase microextraction. Anal Chem 66:844–853Google Scholar
  101. 101.
    Wercinski SAS, Pawliszyn JJ (1999) Solid phase microextraction theory. Taylor & Francis Group, Routledge, Florida, USAGoogle Scholar
  102. 102.
    Souza-Silva EA, Risticevic S, Pawliszyn J (2013) Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. Trends Anal Chem 43:24–36Google Scholar
  103. 103.
    Stassen I, Styles M, Grenci G, Van Gorp H, Vanderlinden W, De Feyter S, Falcaro P, De Vos D, Vereecken P, Ameloot R (2016) Chemical vapour deposition of zeolitic imidazolate, framework thin films. Nat Mat 15:304–312Google Scholar
  104. 104.
    Stassen I, De Vos D, Ameloot R (2016) Vapor-phase deposition and modification of metal–organic frameworks: state-of-the-art and future directions. Chem Eur J 22:14452–14460Google Scholar
  105. 105.
    Selection Guide for Supelco SPME Fibers (2018) Accessed Nov 2018
  106. 106.
    Solid Phase Microextraction (SPME) (2018) Accessed Nov 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pure and Applied SciencesUniversity of UrbinoUrbinoItaly

Personalised recommendations