, Volume 82, Issue 4, pp 725–732 | Cite as

HPLC Separation of Ethylene–Vinyl Acetate Copolymers According to Chemical Composition

  • Tibor Macko
  • Jan-Hendrik Arndt
  • Robert BrüllEmail author
Part of the following topical collections:
  1. 24th International Symposium on Separation Sciences combined with 21st International Conference Analytical Methods and Human Health


Ethylene–vinyl acetate (EVA) copolymers are in dependence on their chemical composition, amorphous, or semicrystalline materials. Therefore, fractionation techniques which are based on crystallization, such as temperature rising elution fractionation (TREF) and crystallization fractionation (CRYSTAF), cannot offer information about the chemical composition distribution of these polymers in the case of amorphous samples. Liquid chromatography has been shown to be a valuable alternative; yet, systems based on silica gel lacked in terms of long-term stability. Using porous graphite, this drawback may be overcome. An HPLC column packed with porous graphite Hypercarb™ and a solvent gradient 2-ethyl-1-hexanol (or cyclohexanone) → 1,2,4-trichlorobenzene can separate EVA copolymers over the full range of VA content at temperatures above 100 °C. A linear dependence between the VA content of the copolymers and their elution volume could be established. Moreover, the chromatographic resolution is larger than obtained using silica gel as stationary phase.

Graphical Abstract


HPLC EVA copolymers Hypercarb Adsorption, chemical composition distribution 



Advice and help at work with the PL GPC220 chromatograph and the ELS detector offered by Mr. R. Linz (Agilent, Darmstadt, Germany), Dr. S. O’Donohue and Dr. J. Yakhoul (Agilent, Church Stretton, England) are highly appreciated.

Compliance with Ethical Standards

Conflict of interest

The authors declare they has no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by authors. The authors confirm compliance with ethical standards.


  1. 1.
    Saechtling H, Oberbach K (2001) Kunststoff Taschenbuch (in german). Hanser, München, p 416Google Scholar
  2. 2.
    Jäger K, Dammert RC, Sultan BA (2002) Thermal degradation studies of different polar polyethylene copolymers. J Appl Polym Sci 84:1465–1473CrossRefGoogle Scholar
  3. 3.
    Su Z, Zhao Y, Xu Y, Zhang X, Zhu S, Wang D, Han CC, Xu D (2004) Polymorphism and side group location of ethylene copolymers characterized by FTIR and NMR spectroscopy. Polymer 45:3577–3581CrossRefGoogle Scholar
  4. 4.
    Busch M, Becker K (2007) Modeling the chain-length differentiated polymer microstructure of 1-olefins. Macromol Symp 259:295–304CrossRefGoogle Scholar
  5. 5.
    Folie B, Kelchtermans M, Shutt JR, Schonemann H, Krukonis V (1998) Fractionation of poly(ethylene-co-vinyl acetate) in supercritical propylene: Towards a molecular understanding of a complex macromolecule. J Appl Polym Sci 64:2015–2030CrossRefGoogle Scholar
  6. 6.
    Faldi A, Soares JBP (2001) Characterization oft he combined molecular weight and composition distribution of industrial ethylene/1-olefin copolymers. Polymer 21:3057–3066CrossRefGoogle Scholar
  7. 7.
    Tso CC, DesLauriers PJ (2004) Comparison of methods for characterizing comonomer composition in ethylene-1-olefin copolymers: 3D-TREF vs. SEC-FTIR. Polymer 45:2657–2663CrossRefGoogle Scholar
  8. 8.
    Albrecht A, Brüll R, Macko T, Malz F, Pasch H (2009) Comparison of high temperature HPLC, CRYSTAF and TREF for the analysis of the chemical composition distribution of ethylene-vinyl acetate copolymers. Macromol Chem Phys 210:1319–1330CrossRefGoogle Scholar
  9. 9.
    Albrecht A, Brüll R, Macko T, Pasch H (2007) Separation of ethylene-vinyl acetate copolymers by high temperature gradient liquid chromatography. Macromolecules 40:5545–5551CrossRefGoogle Scholar
  10. 10.
    Brun Y, Pottiger MT (2009) Characterization of ethylene copolymers with liquid chromatography and melt rheology methods. Macromol Symp 282:81–92CrossRefGoogle Scholar
  11. 11.
    Ginzburg A, Macko T, Malz F, Schroers M, Troetsch-Schaller I, Strittmatter J, Brüll R (2013) Characterization of functionalized polyolefins by high-temperature two-dimensional liquid chromatography. J Chromatogr A 1285:40–47CrossRefPubMedGoogle Scholar
  12. 12.
    Ginzburg A, Macko T, Dolle V, Brüll R (2010) High-temperature two-dimensional liquid chromatography of ethylene-vinyl acetate copolymers. J Chromatogr A 1217:6867–6874CrossRefPubMedGoogle Scholar
  13. 13.
    Pereira L (2008) Porous graphitic carbon as a stationary phase in HPLC: Theory and applications. J Liq Chromatogr Relat Technol 31:1687–1731CrossRefGoogle Scholar
  14. 14.
    West C, Elfakir C, Lafosse M (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 1217:3201–3216CrossRefPubMedGoogle Scholar
  15. 15.
    Macko T, Pasch H (2009) Separation of linear polyethylene from isotactic, atactic and syndiotactic polypropylene by high-temperature adsorption liquid chromatography. Macromolecules 42:6063–6067CrossRefGoogle Scholar
  16. 16.
    Macko T, Brüll R, Alamo RG, Thomann Y, Grumel V (2009) Separation of propene/1-alkene and ethylene/1-alkene copolymers by high-temperature adsorption liquid chromatography. Polymer 50:5443–5448CrossRefGoogle Scholar
  17. 17.
    Macko T, Wang Y, Pasch H (2009) Liquid chromatographic separation of olefin oligomers and ist relation to separation of polyolefins—review. Macromol Symp 282:93–100CrossRefGoogle Scholar
  18. 18.
    Macko T, Brüll R, Alamo RG, Stadler FJ, Losio S (2011) Separation of short-chain branched polyolefins by high-temperature gradient adsorption liquid chromatography. Anal Bioanal Chem 399:1547–1556CrossRefPubMedGoogle Scholar
  19. 19.
    Miller MD, deGroot AW, Lyons JW, van Damme FA, Winniford BL (2011) Separation of polyolefins based on comonomer content using high-temperature gradient adsorption liquid chromatography with a graphitic carbon column. J Appl Polym Sci 123:1238–1244CrossRefGoogle Scholar
  20. 20.
    Lee D, Miller MD, Meunier DM, Lyons JW, Bonner JM, Pell RJ, Li Pi Shan C, Huang T (2011) Development of high temperature comprehensive two-dimensional liquid chromatography hyphenated with infrared and light-scattering detectors for characterization of chemical composition and molecular weight heterogeneities in polyolefin copolymers. J Chromatogr A 1218:7173–7179CrossRefPubMedGoogle Scholar
  21. 21.
    Cheruthazhekatt S, Mayo N, Monrabal B, Pasch H (2013) Chemical composition separation of EP copolymers by CEF and HT-SGIC: crystallization versus adsorption. Macromol Chem Phys 214:2165–2171Google Scholar
  22. 22.
    Ndiripo A, Joubert D, Pasch H (2015) Ethylene/1-heptene copolymers as interesting alternatives to 1-octene-based LLDPE: molecular structure and physical properties. J Polym Sci Polym Chem 54:962–975CrossRefGoogle Scholar
  23. 23.
    Phiri MJ, Dimeska A, Pasch H (2015) On the homogeneity of metallocene ethylene-propylene copolymers as investigated by multiple fractionation techniques. Macromol Chem Phys 216:1619–1628CrossRefGoogle Scholar
  24. 24.
    Macko T, Ginzburg A, Remerie K, Brüll R (2012) Seeparation of high-impact polypropylene using interactive liquid chromatography. Macromol Chem Phys 213:937–944CrossRefGoogle Scholar
  25. 25.
    Cheruthazhekatt S, Pijpers TFJ, Mathot VBF, Pasch H (2013) Preparative TREF–HTHPLC–Hper DSC: linking molecular characteristics and thermal properties of an impact poly(propylene) copolymers. Macromol Symp 330:22–29CrossRefGoogle Scholar
  26. 26.
    Cheruthazhekatt S, Pasch H (2014) Fractionation and characterization of impact polypropylene copolymers by high temperature two-dimensional liquid chromatography. Macromol Symp 337:51–57CrossRefGoogle Scholar
  27. 27.
    Cheruthazhekatt S, Pasch H (2015) High temperature size exclusion-liquid adsorption chromatography (HT-SEC-LAC): full isocratic separation of parent isotactic polypropylene homopolymer from ethylene-propylene copolymers. Polymer 64:1–7CrossRefGoogle Scholar
  28. 28.
    Phiri MJ, Pasch H (2016) Exploring the compositional heterogeneity of vis-broken impact poly(propylene) copolymers by advanced fractionation methods. Macromol Chem Phys 217:783–793CrossRefGoogle Scholar
  29. 29.
    Chitta R, Macko T, Brüll R, van Doremaele G, Heinz LCh (2011) Separation of ethylene-propylene copolymers and ethylene-propylene-diene terpolymers using high-temperature interactive liquid chromatography. J Polym Sci Part A 49:1840–1846CrossRefGoogle Scholar
  30. 30.
    Prabhu KN, Macko T, Brüll R, Tacx J, Ginzburg A, Garg P, Remerie R (2015) Separation of bimodal high density polyethylene using multidimensional high-temperature liquid chromatography. J Chromatogr A 1419:67–80CrossRefPubMedGoogle Scholar
  31. 31.
    Maiko K, Hehn M, Hiller W, Pasch H (2013) Comprehensive two-dimensional liquid chromatography of stereoregular poly(methyl methacrylates) for tacticity and molar mass analysis. Anal Chem 85:9793–9798CrossRefPubMedGoogle Scholar
  32. 32.
    Apel N, Uliyanchenko E, Moyses S, Rommens S, Wold C, Macko T, Rode K, Brüll R (1917) Selective chromatographic characterization of polycarbonate according to hydroxyl end-groups using a porous graphitic carbon column. J Chromatogr A 1488:77–84CrossRefGoogle Scholar
  33. 33.
    Arndt JH, Macko T, Brüll R (2013) Application of the evaporative light scattering detector to analytical problems in polymer science. J Chromatogr A 1210:1–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division Plastics, Group Material AnalyticsFraunhofer Institute for Structural Durability and System Reliability LBFDarmstadtGermany

Personalised recommendations