Glycol Diglycidyl Ether and γ-Aminobutyric Acid Functionalized Silica as a Mixed Mode Stationary Phase for Capillary Liquid Chromatography

  • Shuangli Zhao
  • Feifei Luo
  • Yan Zhang
  • Yi Zhang
  • Pingang He
  • Qingjiang WangEmail author


In this study, a mixed mode stationary phase for capillary liquid chromatography (cLC) was prepared by chemical modification of glycol diglycidyl ether (EGDE) and γ-aminobutyric acid (GABA) bonded to the silica, named as Sil–EGDE–GABA. The Sil–EGDE–GABA was characterized by Fourier transform infrared spectroscopy and elemental analysis. The retention of nucleotide bases at different acetonitrile levels in the mobile phase indicated that the stationary phase possessed both hydrophilic chromatography (HILIC) and reversed-phase chromatography (RPLC) characteristics. Positional isomers, aniline compounds and a mixture of polar–nonpolar analytes were separated in RPLC mode. The stationary phase exhibited different separation mechanisms in the separation of positional isomers, compared with a commercial ODS column. Sulfonamides and biogenic amines were successfully separated in HILIC mode. These results demonstrated the application possibilities of the prepared Sil–EGDE–GABA as packing materials in cLC.


Capillary liquid chromatography Sil–EGDE–GABA stationary phase Hydrophilic chromatography Reversed-phase chromatography 



This work was supported by the National Natural Science Foundation of China (No. 21575042).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

10337_2019_3687_MOESM1_ESM.docx (412 kb)
Supplementary material 1 (DOCX 411 KB)


  1. 1.
    Huang XA, Zhang S, Schultz GA, Henion J (2002) Anal Chem 74:2336–2344. CrossRefGoogle Scholar
  2. 2.
    Jiang ZJ, Smith NW, Ferguson PD, Taylor MR (2007) J Biochem Biophys Methods 70:39–45. CrossRefGoogle Scholar
  3. 3.
    Oberacher H, Huber CG (2002) Trends Anal Chem 21:166–174. CrossRefGoogle Scholar
  4. 4.
    Mansour FR, Danielson ND (2013) Anal Methods 5:4955–4972. CrossRefGoogle Scholar
  5. 5.
    Yang Y, Geng XD (2011) J Chromatogr A 1218:8813–8825. CrossRefGoogle Scholar
  6. 6.
    Aral H, Celik KS, Altindag R, Aral T (2017) Talanta 174:703–714. CrossRefGoogle Scholar
  7. 7.
    Li YY, Xu ZG, Feng YY, Liu XY, Chen T, Zhang HX (2011) Chromatographia 74:523–530. CrossRefGoogle Scholar
  8. 8.
    Wang HZ, Zhang L, Ma T, Zhang LY, Qiao XQ (2016) J Sep Sci 39:3498–3504. CrossRefGoogle Scholar
  9. 9.
    Wang Q, Ye M, Xu L, Shi ZG (2015) Anal Chim Acta 888:182–190. CrossRefGoogle Scholar
  10. 10.
    Wang L, Wu MH, Wang QX, Zhan JJ, Chen HB (2016) Chromatographia 79:1263–1269. CrossRefGoogle Scholar
  11. 11.
    Yang BB, Liu HM, Chen J, Guan M, Qiu HD (2016) J Chromatogr A 1468:79–85. CrossRefGoogle Scholar
  12. 12.
    Bo CM, Wang CZ, Wei YM (2017) J Sep Sci 40:4700–4708. CrossRefGoogle Scholar
  13. 13.
    Jiang Q, Zhao WJ, Qiu HD, Zhang SS (2016) Chromatographia 79:1437–1443. CrossRefGoogle Scholar
  14. 14.
    Sun M, Feng JJ, Luo CN, Liu X, Jiang SX (2013) Talanta 105:135–141. CrossRefGoogle Scholar
  15. 15.
    Li Y, Yang JJ, Jin J, Sun XL, Wang LX, Chen JP (2014) J Chromatogr A 1337:133–139. CrossRefGoogle Scholar
  16. 16.
    Qiu HD, Mallik AK, Takafuji M, Jiang SX, Ihara H (2012) Analyst 137:2553–2555. CrossRefGoogle Scholar
  17. 17.
    Moravcova D, Planeta J, Kahle V, Roth M (2012) J Chromatogr A 1270:178–185. CrossRefGoogle Scholar
  18. 18.
    Shao W, Liu J, Liang Y, Yang K, Min Y, Zhang X, Liang Z, Zhang L, Zhang Y (2018) Anal Bioanal Chem 410:1019–1027. CrossRefGoogle Scholar
  19. 19.
    Jiang ZJ, Reilly J, Everatt B, Smith NW (2009) J Chromatogr A 1216:2439–2448. CrossRefGoogle Scholar
  20. 20.
    Wang QQ, Wu HH, Peng K, Jin HY, Shao HK, Wang YQ, Crommen J, Jiang ZJ (2018) Anal Chim Acta 999:184–189. CrossRefGoogle Scholar
  21. 21.
    Cheng XD, Peng XT, Yu QW, Yuan BF, Feng YQ (2013) Chromatographia 76:1569–1576. CrossRefGoogle Scholar
  22. 22.
    Tan WM, Chang F, Shu Y, Chen Y, Liu JJ, Chen YZ, Ma M, Chen B (2017) Talanta 173:113–122. CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhang Y, Wang G, Chen WJ, He PG, Wang QJ (2016) Analyst 141:1083–1090. CrossRefGoogle Scholar
  24. 24.
    Ray S, Takafuji M, Ihara H (2012) J Chromatogr A 1266:43–52. CrossRefGoogle Scholar
  25. 25.
    Otsuka K, Mikami C, Terabe S (2000) J Chromatogr A 887:457–463. CrossRefGoogle Scholar
  26. 26.
    Aral H, Aral T, Celik KS, Ziyadanogullari B, Ziyadanogullari R (2014) Chromatographia 77:771–781. CrossRefGoogle Scholar
  27. 27.
    Zeng J, Liu SQ, Wang ML, Yao SZ, Chen YZ (2017) Electrophoresis 38:1325–1333. CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Zhang Y, Wang G, Chen WJ, He PG, Wang QJ (2016) Talanta 161:762–768. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations