, Volume 82, Issue 4, pp 733–739 | Cite as

Comparison of Electrophoretic Methods for Determination of Critical Micelle Concentration of Anionic Alkylsulfate Surfactants in Water/Organic Environment

  • Jana Váňová
  • Martina Vavříková
  • Zuzana Smetanová
  • Petr ČeslaEmail author
Part of the following topical collections:
  1. 24th International Symposium on Separation Sciences combined with 21st International Conference Analytical Methods and Human Health


The methods for determination of critical micelle concentration of anionic surfactants using capillary electrophoresis instrumentation were compared in this work. We have focused on the determination of critical micelle concentration of homological series of n-alkyl sulfates using four different methods: the electrical current-based method, and method using migration times, retention factors and effective mobilities of n-alkylbenzenes as probe molecules. We have studied the effects of operation conditions (capillary dimensions, applied voltage) and composition of probe samples on the values of critical micelle concentration. The values of critical micelle concentration determined in water and in 25 mmol L−1 borate buffer pH 8.5 without and with addition of 20% (v/v) of acetonitrile ranged from 60 mmol L−1 for sodium nonyl sulfate to 6.1 mmol L−1 for sodium tridecyl sulfate, with higher values for electrolyte containing acetonitrile. The concentration and solvent of probe molecules have significant effect on the determined value of critical micelle concentration. We have studied in detail critical micelle concentration of sodium dodecyl sulfate in mixtures with low concentration of acetonitrile up to the 6% (v/v). In this region, higher uncertainty of determination of critical micelle concentration was experienced.


Capillary electrophoresis Critical micelle concentration Sodium dodecyl sulfate Acetonitrile Micelles 



The authors acknowledge the financial support by the Czech Science Foundation, project No. 18-14893S.


This study was funded by the Czech Science Foundation (Grant number 18-14893S).

Compliance with Ethical Standards

Conflict of interest

Author Jana Váňová declares that she has no conflict of interest. Author Martina Vavříková declares that she has no conflict of interest. Author Zuzana Smetanová declares that she has no conflict of interest. Author Petr Česla declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Tanford Ch (1974) Theory of micelle formation in aqueous-solutions. J Phys Chem 78:2469–2479CrossRefGoogle Scholar
  2. 2.
    Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T (1984) Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal Chem 56:111–113CrossRefGoogle Scholar
  3. 3.
    Terabe S, Matsubara N, Ishihama Y, Okada Y (1992) Microemulsion electrokinetic chromatography—comparison with micellar electrokinetic chromatography. J Chromatogr A 608:23–29CrossRefGoogle Scholar
  4. 4.
    Fisher LR, Oakenfull DG (1977) Micelles in aqueous solution. Chem Soc Rev 6:25–42CrossRefGoogle Scholar
  5. 5.
    Lin CE (2004) Determination of critical micelle concentration of surfactants by capillary electrophoresis. J Chromatogr A 1037:467–478CrossRefPubMedGoogle Scholar
  6. 6.
    Nesmerak K, Nemcova I (2006) Determination of critical micelle concentration by electrochemical means. Anal Lett 39:1023–1040CrossRefGoogle Scholar
  7. 7.
    Tickle DC, Okafo GN, Camillieri P, Jones RFD, Kirby AJ (1994) Glucopyranoside-based surfactants as pseudostationary phases for chiral separations in capillary electrophoresis. Anal Chem 66:4121–4126CrossRefGoogle Scholar
  8. 8.
    Cifuentes A, Bernal JL, Diez-Masa JC (1997) Determination of critical micelle concentration values using capillary electrophoresis instrumentation. Anal Chem 69:4271–4274CrossRefGoogle Scholar
  9. 9.
    Lin CE, Lin KS (2000) Determination of critical micelle concentration and interactions between cephalosporins and charged surfactants. J Chromatogr A 868:313–316CrossRefPubMedGoogle Scholar
  10. 10.
    Mrestani Y, Claussen S, Neubert RHH (2002) Determination of CMC of sodium glucocorticides hemisuccinates by CE. J Pharm Biomed Anal 30:869–873CrossRefPubMedGoogle Scholar
  11. 11.
    Fuguet E, Rafols C, Roses M, Bosch E (2005) Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal Chim Acta 548:95–100CrossRefGoogle Scholar
  12. 12.
    Lin JM, Nakagawa M, Uchiyama K, Hobo T (1999) Determination of critical micelle concentration of SDS in formamide by capillary electrophoresis. Chromatographia 50:739–744CrossRefGoogle Scholar
  13. 13.
    Lin CE, Huang HC, Chen HW (2001) A capillary electrophoresis study on the influence of beta-cyclodextrin on the critical micelle concentration of sodium dodecyl sulfate. J Chromatogr A 917:297–310CrossRefPubMedGoogle Scholar
  14. 14.
    Lin CE, Chen MJ, Huang HC, Chen HW (2001) Capillary electrophoresis study on the micellization and critical micelle concentration of sodium dodecyl sulfate—influence of solubilized solutes. J Chromatogr A 924:83–91CrossRefPubMedGoogle Scholar
  15. 15.
    Chen ZL, Lin JM, Uchiyama K, Hobo T (2000) Determination of critical micelle concentrations of anionic surfactants based on ligand exchange micellar electrokinetic chromatography. Anal Chim Acta 403:173–178CrossRefGoogle Scholar
  16. 16.
    Wu CH, Li NJ, Chen KC, Hsu HF (2014) Determination of critical micelle concentrations of ionic and nonionic surfactants based on relative viscosity measurements by capillary electrophoresis. Res Chem Intermed 40:2371–2379CrossRefGoogle Scholar
  17. 17.
    Petr J (2017) Rapid determination of the critical micelle concentration by Taylor dispersion analysis in capillaries using both direct and indirect detection. J Sep Sci 40:1421–1426CrossRefPubMedGoogle Scholar
  18. 18.
    Stanley FE, Warner AM, Schneiderman E, Stalcup AM (2009) Rapid determination of surfactant critical micelle concentrations using pressure-driven flow with capillary electrophoresis instrumentation. J Chromatogr A 1216:8431–8434CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lokajova J, Hruska V, Tesarova E, Gas B (2008) System peaks in micellar electrophoresis: I. Utilization of system peaks for determination of critical micelle concentration. Electrophoresis 29:1189–1195CrossRefPubMedGoogle Scholar
  20. 20.
    Jensen H, Ostergaard J, Hansen SH (2007) CE frontal analysis employing contactless conductivity detection for determination of CMCs of non-UV absorbing charged surfactants. Electrophoresis 28:2975–2980CrossRefPubMedGoogle Scholar
  21. 21.
    Steflova J, Stefl M, Walz S, Knop M, Trapp O (2016) Comprehensive study on critical micellar concentrations of SDS in acetonitrile-water solvents. Electrophoresis 37:1287–1295CrossRefPubMedGoogle Scholar
  22. 22.
    Jacquier JC, Desbene PL (1996) Determination of critical micelle concentration by capillary electrophoresis. Application to organo-saline electrolytes. J Chromatogr A 743:307–314CrossRefGoogle Scholar
  23. 23.
    Kumar G, Chauhan MS (2018) Conductometric investigations of surfactant behavior in aqueous polar aprotic organic additives. J Mol Liq 249:710–715CrossRefGoogle Scholar
  24. 24.
    Nakamura H, Sano A, Matsuura K (1998) Determination of critical micelle concentration of anionic surfactants by capillary electrophoresis using 2-naphthalenemethanol as a marker for micelle formation. Anal Sci 14:379–382CrossRefGoogle Scholar
  25. 25.
    Ozaki H, Ichihara A, Terabe S (1995) Micellar electrokinetic chromatography using high-molecular-mass surfactants—comparison between anionic and cationic surfactants and effects of modifiers. J Chromatogr A 709:3–10CrossRefGoogle Scholar
  26. 26.
    Vanova J, Liimatta LJ, Cesla P, Wiedmer SK (2017) Determination of distribution constants of antioxidants by electrokinetic chromatography. Cogent Chem. CrossRefGoogle Scholar
  27. 27.
    Wiedmer SK, Lokajova J, Riekkola ML (2010) Marker compounds for the determination of retention factors in EKC. J Sep Sci 33:394–409CrossRefPubMedGoogle Scholar
  28. 28.
    Aniansson EAG, Wall SN, Almgren M, Hoffmann H, Kielmann I, Ulbricht W, Zana R, Lang J, Tondre C (1976) Theory of kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J Phys Chem 80:905–922CrossRefGoogle Scholar
  29. 29.
    Quirino JP, Terabe S (1999) Sweeping of analyte zones in electrokinetic chromatography. Anal Chem 71:1638–1644CrossRefGoogle Scholar
  30. 30.
    Ranganathan R, Tran L, Bales BL (2000) Surfactant- and salt-induced growth of normal sodium alkyl sulfate micelles well above their critical micelle concentrations. J Phys Chem B 104:2260–2264CrossRefGoogle Scholar
  31. 31.
    Cesla P, Fischer J, Jandera P (2012) Improvement of the sensitivity of 2D LC-MEKC separation of phenolic acids and flavonoids natural antioxidants using the on-line preconcentration step. Electrophoresis 33:2464–2473CrossRefPubMedGoogle Scholar
  32. 32.
    Motin MA, Mia MAH, Islam AKMN (2015) Thermodynamic properties of sodium dodecyl sulfate aqueous solutions with methanol, ethanol, n-propanol and iso-propanol at different temperatures. J Saudi Chem Soc 19:172–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations