Advertisement

Chromatographia

, Volume 82, Issue 1, pp 425–441 | Cite as

Immobilized Enzyme Reactors: an Overview of Applications in Drug Discovery from 2008 to 2018

  • Angela De SimoneEmail author
  • Marina Naldi
  • Manuela Bartolini
  • Lara Davani
  • Vincenza Andrisano
Review
Part of the following topical collections:
  1. Rising Stars in Separation Science

Abstract

The necessity to develop automated methods for the fast screening of new libraries of compounds and the identification of active entities from natural mixtures has led to an increasing interest in the development of immobilized enzyme reactors (IMERs). This strategy overcomes some drawbacks of the in-solution methods and is, therefore, very attractive in the drug discovery field. This review gives an overview of IMER applications in the last decade. The reported examples concern conventional columns as well as capillary reactors integrated in liquid chromatography or capillary electrophoresis systems, coupled to spectroscopic or mass spectrometry detectors. The experimental setups and main features as well as characterization of new active entities are discussed. As a result of the growing importance of compounds from natural sources in drug discovery, particular attention is given to IMERs developed to be used for the identification of bioactive compounds.

Graphical Abstract

Keywords

Immobilized enzyme reactor Drug discovery Screening Natural compounds 

Notes

Funding

The authors receive no funds to develop this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Bertucci C, Bartolini M, Gotti R, Andrisano V (2003) J Chromatogr B Analyt Technol Biomed Life Sci 797:111–129CrossRefPubMedGoogle Scholar
  2. 2.
    Girelli AM, Mattei E (2005) J Chromatogr B Analyt Technol Biomed Life Sci 819:3–16.  https://doi.org/10.1016/j.jchromb.2005.01.031 CrossRefPubMedGoogle Scholar
  3. 3.
    Jason-Moller L, Murphy M, Bruno J (2006) Curr Protoc Protein Sci 45:19.13.1–19.13.14.  https://doi.org/10.1002/0471140864.ps1913s45 CrossRefGoogle Scholar
  4. 4.
    Choi JW, Oh BK, Kim YK, Min J (2007) J Microbiol Biotechnol 17:5–14PubMedGoogle Scholar
  5. 5.
    Lee J, Soper SA, Murray KK (2009) Anal Chim Acta 649:180–190.  https://doi.org/10.1016/j.aca.2009.07.037 CrossRefPubMedGoogle Scholar
  6. 6.
    Krenková J, Foret F (2004) Electrophoresis 25:3550–3563.  https://doi.org/10.1002/elps.200406096 CrossRefPubMedGoogle Scholar
  7. 7.
    Fang SM, Wang HN, Zhao ZX, Wang WH (2012) J Pharm Anal 2:83–89.  https://doi.org/10.1016/j.jpha.2011.12.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Brena BM, Irazoqui G, Giacomini C, Batista-Viera F (2003) Effect of increasing co-solvent concentration on the stability of soluble and immobilized beta-galactosidase. J Mol Catal B Enzym 21:25–29CrossRefGoogle Scholar
  9. 9.
    Schejbal J, Glatz Z (2018) J Sep Sci 41:323–335.  https://doi.org/10.1002/jssc.201700905 CrossRefPubMedGoogle Scholar
  10. 10.
    Vilanova E, Manjon A, Iborra JL (1984) Biotechnol Bioeng 26:1306–1312.  https://doi.org/10.1002/bit.260261107 CrossRefPubMedGoogle Scholar
  11. 11.
    Luckarift HR, Johnson GR, Spain JC (2006) J Chromatogr B Analyt Technol Biomed Life Sci 843:310–316.  https://doi.org/10.1016/j.jchromb.2006.06.036 CrossRefPubMedGoogle Scholar
  12. 12.
    Hu F, Deng C, Zhang X (2008) J Chromatogr B Analyt Technol Biomed Life Sci 871:67–71.  https://doi.org/10.1016/j.jchromb.2008.06.036 CrossRefPubMedGoogle Scholar
  13. 13.
    Freije R, Klein T, Ooms B, Kauffman HF, Bischoff R (2008) J Chromatogr A 1189:417–425.  https://doi.org/10.1016/j.chroma.2007.10.059 CrossRefPubMedGoogle Scholar
  14. 14.
    Wu S, Sun L, Ma J, Yang K, Liang Z, Zhang L, Zhang Y (2011) Talanta 83:1748–1753.  https://doi.org/10.1016/j.talanta.2010.12.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Fossati T, Colombo M, Castiglioni C, Abbiati G (1994) J Chromatogr B Biomed Appl 656:59–64CrossRefPubMedGoogle Scholar
  16. 16.
    Yamato S, Kawakami N, Shimada K, Ono M, Idei N, Itoh Y, Tachikawa E (2004) Biol Pharm Bull 27:210–215CrossRefPubMedGoogle Scholar
  17. 17.
    Shu HC, Wu NP (2001) Talanta 54:361–368CrossRefPubMedGoogle Scholar
  18. 18.
    Markoglou N, Wainer IW (2002) J Chromatogr A 948:249–256CrossRefPubMedGoogle Scholar
  19. 19.
    Mattiasson B (1988) Methods Enzymol 137:647–656CrossRefPubMedGoogle Scholar
  20. 20.
    Gast FU, Franke I, Meiss G, Pingoud A (2001) J Biotechnol 87:131–141CrossRefPubMedGoogle Scholar
  21. 21.
    Luckarift HR, Ku BS, Dordick JS, Spain JC (2007) Biotechnol Bioeng 98:701–705.  https://doi.org/10.1002/bit.21447 CrossRefPubMedGoogle Scholar
  22. 22.
    Betancor L, Luckarift HR (2008) Trends Biotechnol 26:566–572.  https://doi.org/10.1016/j.tibtech.2008.06.009 CrossRefPubMedGoogle Scholar
  23. 23.
    Subramanian A, Kennel SJ, Oden PI, Jacobson KB, Woodward J, Doktycz MJ (1999) Comparison of techniques for enzyme immobilization on silicon supports. Enzyme Microbial Technol 24:26CrossRefGoogle Scholar
  24. 24.
    He P, Greenway G, Haswell SJ (2008) Nanotechnology 19:315603.  https://doi.org/10.1088/0957-4484/19/31/315603 CrossRefPubMedGoogle Scholar
  25. 25.
    Kim D, Herr AE (2013) Biomicrofluidics 7:41501.  https://doi.org/10.1063/1.4816934 CrossRefPubMedGoogle Scholar
  26. 26.
    Andrisano V, Bartolini M (2010) Immobilisation of enzymes on monolithic matrices: applications in drug discovery. In: Wang PG (eds) Monolithic chromatography and its modern applications. ILM, LondonGoogle Scholar
  27. 27.
    Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Soc 56:658–666CrossRefGoogle Scholar
  28. 28.
    Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137:143–144CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vodopivec M, Podgornik A, Berovic M, Strancar A (2003) J Chromatogr B Analyt Technol Biomed Life Sci 795:105–113CrossRefPubMedGoogle Scholar
  31. 31.
    Wheatley JB, Schmidt DE (1999) J Chromatogr A 849:1–12CrossRefPubMedGoogle Scholar
  32. 32.
    Bartolini M, Cavrini V, Andrisano V (2005) J Chromatogr A 1065:135–144CrossRefPubMedGoogle Scholar
  33. 33.
    De Simone A, Mancini F, Cosconati S, Marinelli L, La Pietra V, Novellino E, Andrisano V (2013) J Pharm Biomed Anal 73:131–134.  https://doi.org/10.1016/j.jpba.2012.03.006 CrossRefPubMedGoogle Scholar
  34. 34.
    Andrisano V, Bartolini M, Gotti R, Cavrini V, Felix G (2001) J Chromatogr B Biomed Sci Appl 753:375–383CrossRefPubMedGoogle Scholar
  35. 35.
    Chlebek J, De Simone A, Hošťálková A, Opletal L, Pérez C, Pérez DI, Havlíková L, Cahlíková L, Andrisano V (2016) Fitoterapia 109:241–247.  https://doi.org/10.1016/j.fitote.2016.01.008 CrossRefPubMedGoogle Scholar
  36. 36.
    De Simone A, Seidl C, Santos CA, Andrisano V (2014) J Chromatogr B Analyt Technol Biomed Life Sci 953–954:108–114.  https://doi.org/10.1016/j.jchromb.2014.01.056 CrossRefPubMedGoogle Scholar
  37. 37.
    Mancini F, Andrisano V (2010) J Pharm Biomed Anal 52:355–361.  https://doi.org/10.1016/j.jpba.2009.07.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Mancini F, Naldi M, Cavrini V, Andrisano V (2007) J Chromatogr A 1175:217–226.  https://doi.org/10.1016/j.chroma.2007.10.047 CrossRefPubMedGoogle Scholar
  39. 39.
    Mancini F, De Simone A, Andrisano V (2011) Anal Bioanal Chem 400:1979–1996.  https://doi.org/10.1007/s00216-011-4963-x CrossRefPubMedGoogle Scholar
  40. 40.
    Seidl C, de Moraes Santos CA, De Simone A, Bartolini M, Weffort-Santos AM, Andrisano V (2017) Curr Alzheimer Res 14:317–326.  https://doi.org/10.2174/1567205013666161026150455 CrossRefPubMedGoogle Scholar
  41. 41.
    Bartolini M, Greig NH, Yu QS, Andrisano V (2009) J Chromatogr A 1216:2730–2738.  https://doi.org/10.1016/j.chroma.2008.09.100 CrossRefPubMedGoogle Scholar
  42. 42.
    Nicoli R, Bartolini M, Rudaz S, Andrisano V, Veuthey JL (2008) J Chromatogr A 1206:2–10.  https://doi.org/10.1016/j.chroma.2008.05.080 CrossRefPubMedGoogle Scholar
  43. 43.
    Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  44. 44.
    Perola E, Cellai L, Lamba D, Filocamo L, Brufani M (1997) Biochim Biophys Acta 1343:41–50CrossRefPubMedGoogle Scholar
  45. 45.
    André C, Herlem G, Gharbi T, Guillaume YC (2011) J Pharm Biomed Anal 55:48–53.  https://doi.org/10.1016/j.jpba.2011.01.003 CrossRefPubMedGoogle Scholar
  46. 46.
  47. 47.
    Wu G, Meininger CJ (1995) Am J Physiol 269:H1312–H1318.  https://doi.org/10.1152/ajpheart.1995.269.4.H1312 CrossRefPubMedGoogle Scholar
  48. 48.
    Kuhn NJ, Ward S, Piponski M, Young TW (1995) Arch Biochem Biophys 320:24–34.  https://doi.org/10.1006/abbi.1995.1338 CrossRefPubMedGoogle Scholar
  49. 49.
    Raman NN, Khan M, Hasan R (1994) Bioactive components from Ficus glomerata. Pure Appl Chem 66:2287–2290CrossRefGoogle Scholar
  50. 50.
    Vanzolini KL, Vieira LC, Corrêa AG, Cardoso CL, Cass QB (2013) J Med Chem 56:2038–2044.  https://doi.org/10.1021/jm301732a CrossRefPubMedGoogle Scholar
  51. 51.
    Vilela AF, da Silva JI, Vieira LC, Bernasconi GC, Corrêa AG, Cass QB, Cardoso CL (2014) J Chromatogr B Analyt Technol Biomed Life Sci 968:87–93.  https://doi.org/10.1016/j.jchromb.2013.11.037 CrossRefPubMedGoogle Scholar
  52. 52.
    da Silva JI, de Moraes MC, Vieira LC, Corrêa AG, Cass QB, Cardoso CL (2013) J Pharm Biomed Anal 73:44–52.  https://doi.org/10.1016/j.jpba.2012.01.026 CrossRefPubMedGoogle Scholar
  53. 53.
    Orhan IE (2012) Curr Med Chem 19:2252–2261CrossRefPubMedGoogle Scholar
  54. 54.
    Anand N, Singh P, Sharma A, Tiwari S, Singh V, Singh DK, Srivastava KK, Singh BN, Tripathi RP (2012) Bioorg Med Chem 20:5150–5163.  https://doi.org/10.1016/j.bmc.2012.07.009 CrossRefPubMedGoogle Scholar
  55. 55.
    Catto M, Pisani L, Leonetti F, Nicolotti O, Pesce P, Stefanachi A, Cellamare S, Carotti A (2013) Bioorg Med Chem 21:146–152.  https://doi.org/10.1016/j.bmc.2012.10.045 CrossRefPubMedGoogle Scholar
  56. 56.
    Peng XM, Damu GL, Zhou C (2013) Curr Pharm Des 19:3884–3930CrossRefPubMedGoogle Scholar
  57. 57.
    Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M (2013) Prim Care Companion CNS Disord 15:1–8.  https://doi.org/10.4088/pcc.12r01412 CrossRefGoogle Scholar
  58. 58.
    Kruskal WH, Wallis WA (1952) J Am Statist Assoc 47:583–621CrossRefGoogle Scholar
  59. 59.
    Cornelio VE, de Moraes MC, Domingues VC, Fernandes JB, da Silva MFDG, Cass QB, Vieira PC (2018) J Pharm Biomed Anal 151:252–259.  https://doi.org/10.1016/j.jpba.2018.01.001 CrossRefPubMedGoogle Scholar
  60. 60.
    Benes P, Vetvicka V, Fusek M (2008) Crit Rev Oncol Hematol 68:12–28.  https://doi.org/10.1016/j.critrevonc.2008.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cardoso CL, Lima VV, Zottis A, Oliva G, Andricopulo AD, Wainer IW, Moaddel R, Cass QB (2006) J Chromatogr A 1120:151–157.  https://doi.org/10.1016/j.chroma.2005.10.063 CrossRefPubMedGoogle Scholar
  62. 62.
    de Moraes MC, Ducati RG, Donato AJ, Basso LA, Santos DS, Cardoso CL, Cass QB (2012) J Chromatogr A 1232:110–115.  https://doi.org/10.1016/j.chroma.2011.10.056 CrossRefPubMedGoogle Scholar
  63. 63.
    Galmarini CM (2006) IDrugs 9:712–722PubMedGoogle Scholar
  64. 64.
    Kalckar HM (1947) J Biol Chem 167:429–443PubMedGoogle Scholar
  65. 65.
    Bartolini M, Cavrini V, Andrisano V (2007) J Chromatogr A 1144:102–110.  https://doi.org/10.1016/j.chroma.2006.11.029 CrossRefPubMedGoogle Scholar
  66. 66.
    Vilela AFL, Seidl C, Lima JM, Cardoso CL (2018) Anal Biochem 549:53–57.  https://doi.org/10.1016/j.ab.2018.03.012 CrossRefPubMedGoogle Scholar
  67. 67.
    Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D, Rockwood K, Martin E (2003) Alzheimer Dis Assoc Disord 17:117–126CrossRefPubMedGoogle Scholar
  68. 68.
    Forsberg EM, Green JR, Brennan JD (2011) Anal Chem 83:5230–5236.  https://doi.org/10.1021/ac200534t CrossRefPubMedGoogle Scholar
  69. 69.
    Forsberg EM, Brennan JD (2014) Anal Chem 86:8457–8465.  https://doi.org/10.1021/ac5022166 CrossRefPubMedGoogle Scholar
  70. 70.
    Besanger TR, Hodgson RJ, Green JR, Brennan JD (2006) Anal Chim Acta 564:106–115.  https://doi.org/10.1016/j.aca.2005.12.066 CrossRefPubMedGoogle Scholar
  71. 71.
    La Motta C, Sartini S, Mugnaini L, Salerno S, Simorini F, Taliani S, Marini AM, Da Settimo F, Lavecchia A, Novellino E, Antonioli L, Fornai M, Blandizzi C, Del Tacca M (2009) J Med Chem 52:1681–1692.  https://doi.org/10.1021/jm801427r CrossRefPubMedGoogle Scholar
  72. 72.
    Alunni S, Orrù M, Ottavi L (2008) J Enzyme Inhib Med Chem 23:182–189.  https://doi.org/10.1080/14756360701475233 CrossRefPubMedGoogle Scholar
  73. 73.
    Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S, Volpini R, Camaioni E (2001) Med Res Rev 21:105–128CrossRefPubMedGoogle Scholar
  74. 74.
    de Moraes MC, Temporini C, Calleri E, Bruni G, Ducati RG, Santos DS, Cardoso CL, Cass QB, Massolini G (2014) J Chromatogr A 1338:77–84.  https://doi.org/10.1016/j.chroma.2014.02.057 CrossRefPubMedGoogle Scholar
  75. 75.
    Brekkan E, Lundqvist A, Lundahl P (1996) Biochemistry 35:12141–12145.  https://doi.org/10.1021/bi9603231 CrossRefPubMedGoogle Scholar
  76. 76.
  77. 77.
    Haneskog L, Zeng CM, Lundqvist A, Lundahl P (1998) Biochim Biophys Acta 1371:1–4CrossRefPubMedGoogle Scholar
  78. 78.
    Ouimet CM, D’amico CI, Kennedy RT (2017) Expert Opin Drug Discov 12:213–224.  https://doi.org/10.1080/17460441.2017.1268121 CrossRefPubMedGoogle Scholar
  79. 79.
    Iqbal J, Iqbal S, Müller CE (2013) Analyst 138:3104–3116.  https://doi.org/10.1039/c3an00031a CrossRefPubMedGoogle Scholar
  80. 80.
    Ji X, Ye F, Lin P, Zhao S (2010) Talanta 82:1170–1174.  https://doi.org/10.1016/j.talanta.2010.06.029 CrossRefPubMedGoogle Scholar
  81. 81.
    Haynes J, Killilea DW, Peterson PD, Thompson WJ (1996) J Pharmacol Exp Ther 276:752–757PubMedGoogle Scholar
  82. 82.
    Lin P, Zhao S, Lu X, Ye F, Wang H (2013) J Sep Sci 36:2538–2543.  https://doi.org/10.1002/jssc.201300315 CrossRefPubMedGoogle Scholar
  83. 83.
    Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V (2016) Int J Cardiol 213:8–14.  https://doi.org/10.1016/j.ijcard.2015.08.109 CrossRefPubMedGoogle Scholar
  84. 84.
    Kim SC, Schneeweiss S, Choudhry N, Liu J, Glynn RJ, Solomon DH (2015) Am J Med 128:616–657.  https://doi.org/10.1016/j.amjmed.2015.01.013 CrossRefGoogle Scholar
  85. 85.
    Zhang L, Hu K, Li X, Zhao S (2018) CE method with partial filling techniques for screening of xanthine oxidase inhibitor in traditional Chinese medicine. Chromatographia 73:583–587CrossRefGoogle Scholar
  86. 86.
    Iqbal J (2011) Anal Biochem 414:226–231.  https://doi.org/10.1016/j.ab.2011.03.021 CrossRefPubMedGoogle Scholar
  87. 87.
    Lanier M, Sergienko E, Simão AM, Su Y, Chung T, Millán JL, Cashman JR (2010) Bioorg Med Chem 18:573–579.  https://doi.org/10.1016/j.bmc.2009.12.012 CrossRefPubMedGoogle Scholar
  88. 88.
    Teriete P, Pinkerton AB, Cosford ND (2013) Methods Mol Biol 1053:85–101.  https://doi.org/10.1007/978-1-62703-562-0_5 CrossRefPubMedGoogle Scholar
  89. 89.
    Narisawa S, Harmey D, Yadav MC, O’Neill WC, Hoylaerts MF, Millán JL (2007) J Bone Miner Res 22:1700–1710.  https://doi.org/10.1359/jbmr.070714 CrossRefPubMedGoogle Scholar
  90. 90.
    Wang S, Su P, Yang Y (2012) Anal Biochem 427:139–143.  https://doi.org/10.1016/j.ab.2012.05.014 CrossRefPubMedGoogle Scholar
  91. 91.
    Guascito MR, Malitesta C, Mazzotta E, Turco A (2008) Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: study of the effect of hydrogen peroxide decomposition. Sensors Actuators B Chem 131:394–402CrossRefGoogle Scholar
  92. 92.
    Jiang TF, Liang TT, Wang YH, Zhang WH, Lv ZH (2013) J Pharm Biomed Anal 84:36–40.  https://doi.org/10.1016/j.jpba.2013.05.023 CrossRefPubMedGoogle Scholar
  93. 93.
    Gao X, Luo W, Xie G, Xue C, Ding Q (2004) Characteristics and kinetics of inhibition of polyphenol oxidase from Spodoptera exigua (Lepidoptera: Noctuidae). Sci Agric Sin:687–691Google Scholar
  94. 94.
    Camara MA, Tian M, Guo L, Yang L (2015) J Chromatogr B Analyt Technol Biomed Life Sci 990:174–180.  https://doi.org/10.1016/j.jchromb.2015.03.019 CrossRefPubMedGoogle Scholar
  95. 95.
    Ham M, Choe SS, Shin KC, Choi G, Kim JW, Noh JR, Kim YH, Ryu JW, Yoon KH, Lee CH, Kim JB (2016) Diabetes 65:2624–2638.  https://doi.org/10.2337/db16-0060 CrossRefPubMedGoogle Scholar
  96. 96.
    Zhang C, Zhang Z, Zhu Y, Qin S (2014) Anticancer Agents Med Chem 14:280–289CrossRefPubMedGoogle Scholar
  97. 97.
    Schejbal J, Řemínek R, Zeman L, Mádr A, Glatz Z (2016) J Chromatogr A 1437:234–240.  https://doi.org/10.1016/j.chroma.2016.01.081 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Angela De Simone
    • 1
    Email author
  • Marina Naldi
    • 2
    • 3
  • Manuela Bartolini
    • 2
  • Lara Davani
    • 1
  • Vincenza Andrisano
    • 1
  1. 1.Department for Life Quality StudiesAlma Mater Studiorum Università di BolognaRiminiItaly
  2. 2.Department of Pharmacy and BiotechnologyAlma Mater Studiorum Università di BolognaBolognaItaly
  3. 3.Center for Applied Biomedical Research (C.R.B.A.)S. Orsola-Malpighi HospitalBolognaItaly

Personalised recommendations