Advertisement

Chromatographia

, Volume 82, Issue 1, pp 125–141 | Cite as

How to Deal with Mercury in Sediments? A Critical Review About Used Methods for the Speciation of Mercury in Sediments

  • C. Hellmann
  • R. D. Costa
  • O. J. SchmitzEmail author
Review
  • 517 Downloads
Part of the following topical collections:
  1. 50th Anniversary Commemorative Issue

Abstract

Sediments serve as an indicator of the state of the environment, as they reveal, anthropogenic influences (e.g. industry) over time. The knowledge about the composition of sediments, in particular by the speciation, helps in the assessment of the environmental situation. The speciation of mercury in sediments is still being discussed and continues to pose a great challenge for analytical chemists. Despite a broad number of publications in this area, there is no gold-standard about the speciation of mercury in sediments. The reason for this is the growing interest in new, better methods for the speciation of mercury, which increases the number of publications and the uncertainty among the analysts. Therefore, the methodology of mercury speciation in sediments requires improvement and would benefit from a standardized approach. The goal of this review is to give an overview of the existing methods and to discuss the issues of methodology. Discussed parts in this review article include: (1) available reference material, (2) the methodology of extraction, (3) enrichment procedures, (4) separation and (5) detection.

Graphical Abstract

Keywords

Mercury speciation Sediments Extraction Separation Pre-concentration Detection 

Notes

Acknowledgements

Financial support from the Federal Institute of Hydrology is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kudo A, Miyahara S (1991) Water Sci Technol 23:283–290Google Scholar
  2. 2.
    WHO (2010) Public Health and Environment. World Health Organization, Geneva. http://www.who.int/ipcs/features/10chemicals_en.pdf?ua=1
  3. 3.
    Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Trac Trend Anal Chem 24:383–393.  https://doi.org/10.1016/j.trac.2004.01.001 Google Scholar
  4. 4.
    Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Chem Rev 107:641–662.  https://doi.org/10.1021/cr050353m Google Scholar
  5. 5.
    Hursh JB, Clarkson TW, Cherian MG, Vostal JJ, Vandermallie R (1976) Arch Environ Health 31:302–309Google Scholar
  6. 6.
    Syversen T, Kaur P (2012) J Trace Elem Med Bio 26:215–226.  https://doi.org/10.1016/j.jtemb.2012.02.004 Google Scholar
  7. 7.
    Gochfeld M (2003) Ecotox Environ Safe 56:174–179.  https://doi.org/10.1016/S0147-6513(03)00060-5 Google Scholar
  8. 8.
    Friberg L, Skog E, Wahlberg JE (1961) Acta Derm Venereol 41:40–52Google Scholar
  9. 9.
    Magos L, Brown AW, Sparrow S, Bailey E, Snowden RT, Skipp WR (1985) Arch Toxicol 57:260–267.  https://doi.org/10.1007/Bf00324789 Google Scholar
  10. 10.
    Clarkson TW (2002) Environ Health Persp 110:11–23Google Scholar
  11. 11.
    Kerper LE, Ballatori N, Clarkson TW (1992) Am J Physiol 262:R761–R765Google Scholar
  12. 12.
    Aberg B, Ekman L, Falk R, Greitz U, Persson G, Snihs JO (1969) Arch Environ Health 19:478–484Google Scholar
  13. 13.
    Ullrich SM, Tanton TW, Abdrashitova SA (2001) Crit Rev Environ Sci Technol 31:241–293.  https://doi.org/10.1080/20016491089226 Google Scholar
  14. 14.
    Li WC, Tse HF (2015) Environ Sci Pollut Res 22:192–201.  https://doi.org/10.1007/s11356-014-3544-x Google Scholar
  15. 15.
    Issaro N, Abi-Ghanem C, Bermond A (2009) Anal Chim Acta 631:1–12.  https://doi.org/10.1016/j.aca.2008.10.020 Google Scholar
  16. 16.
    Aceto M, Foglizzo AM, Mentasti E, Sacchero G, Sarzanini C (1995) Int J Environ Anal Chem 60:1–13.  https://doi.org/10.1080/03067319508027222 Google Scholar
  17. 17.
    Mason RP, Reinfelder JR, Morel FMM (1995) Water Air Soil Pollut 80:915–921.  https://doi.org/10.1007/Bf01189744 Google Scholar
  18. 18.
    Malm O, Branches FJP, Akagi H, Castro MB, Pfeiffer WC, Harada M, Bastos WR, Kato H (1995) Sci Total Environ 175:141–150.  https://doi.org/10.1016/0048-9697(95)04910-X Google Scholar
  19. 19.
    Weber JH, Puk R (1994) Appl Organomet Chem 8:709–713.  https://doi.org/10.1002/aoc.590080723 Google Scholar
  20. 20.
    Hintelmann H, Falter R, Ilgen G, Evans RD (1997) Fresen J Anal Chem 358:363–370.  https://doi.org/10.1007/s002160050431 Google Scholar
  21. 21.
    Leopold K, Foulkes M, Worsfold P (2010) Anal Chim Acta 663:127–138.  https://doi.org/10.1016/j.aca.2010.01.048 Google Scholar
  22. 22.
    Bowles KC, Apte SC, Maher WA, Bluhdorn DR (2003) Water Air Soil Pollut 147:25–38.  https://doi.org/10.1023/A:1024561830113 Google Scholar
  23. 23.
    Bisinoti MC, Junior ES, Jardim WF (2007) J Brazil Chem Soc 18:544–553.  https://doi.org/10.1590/S0103-50532007000300008 Google Scholar
  24. 24.
    Araujo BF, Hintelmann H, Dimock B, Sobrinho RD, Bernardes MC, de Almeida MG, Krusche AV, Rangel TP, Thompson F, de Rezende CE (2018) Limnol Oceanogr 63:1134–1145.  https://doi.org/10.1002/lno.10758 Google Scholar
  25. 25.
    He TR, Lu J, Yang F, Feng XB (2007) Sci Total Environ 386:53–64.  https://doi.org/10.1016/j.scitotenv.2007.07.022 Google Scholar
  26. 26.
    Kannan K, Smith RG, Lee RF, Windom HL, Heitmuller PT, Macauley JM, Summers JK (1998) Arch Environ Contam Toxicol 34:109–118.  https://doi.org/10.1007/s002449900294 Google Scholar
  27. 27.
    Mikac N, Niessen S, Ouddane B, Wartel M (1999) Appl Organomet Chem 13:715–725.  https://doi.org/10.1002/(Sici)1099-0739(199910)13:10%3C715::Aid-Aoc918%3E3.0.Co;2-4 Google Scholar
  28. 28.
    Kannan K, Falandysz J (1998) Water Air Soil Pollut 103:129–136.  https://doi.org/10.1023/A:1004967112178 Google Scholar
  29. 29.
    Wilken RD, Hintelmann H (1991) Water Air Soil Pollut 56:427–437.  https://doi.org/10.1007/Bf00342289 Google Scholar
  30. 30.
    Minganti V, Capelli R, Drava G, De Pellegrini R (2007) Chemosphere 67:1018–1024.  https://doi.org/10.1016/j.chemosphere.2006.10.053 Google Scholar
  31. 31.
    Gabriel MC, Williamson DG (2004) Environ Geochem Health 26:421–434.  https://doi.org/10.1007/s10653-004-1308-0 Google Scholar
  32. 32.
    Ibanez-Palomino C, Lopez-Sanchez JF, Sahuquillo A (2012) Anal Chim Acta 720:9–15.  https://doi.org/10.1016/j.aca.2012.01.015 Google Scholar
  33. 33.
    Le Roux S, Baker P, Crouch A (2016) S Afr J Chem S Afr T 69:124–131.  https://doi.org/10.17159/0379-4350/2016/v69a15 Google Scholar
  34. 34.
    Templeton DM, Ariese F, Cornelis R, Danielsson LG, Muntau H, Van Leeuwen HP, Lobinski R (2000) Pure Appl Chem 72:1453–1470.  https://doi.org/10.1351/pac200072081453 Google Scholar
  35. 35.
    Sarica DY, Turker AR (2012) Clean Soil Air Water 40:523–530.  https://doi.org/10.1002/clen.201100535 Google Scholar
  36. 36.
    Braaten HFV, de Wit HA, Harman C, Hagestrom U, Larssen T (2014) Int J Environ Anal Chem 94:381–384.  https://doi.org/10.1080/03067319.2013.823489 Google Scholar
  37. 37.
    Martinis EM, Wuilloud RG (2010) J Anal Atom Spectrom 25:1432–1439.  https://doi.org/10.1039/c004678g Google Scholar
  38. 38.
    Amde M, Yin YG, Zhang D, Liu JF (2016) Chem Speciat Bioavailab 28:51–65.  https://doi.org/10.1080/09542299.2016.1164019 Google Scholar
  39. 39.
    Yu LP, Yan XP (2003) Trac Trend Anal Chem 22:245–253.  https://doi.org/10.1016/S0165-9936(03)00407-2 Google Scholar
  40. 40.
    Rosain RM, Wai CM (1973) Anal Chim Acta 65:279–284.  https://doi.org/10.1016/S0003-2670(01)82493-4 Google Scholar
  41. 41.
    Leermakers M, Lansens P, Baeyens W (1990) Fresen J Anal Chem 336:655–662.  https://doi.org/10.1007/Bf00331410 Google Scholar
  42. 42.
    Krivan V, Haas HF (1988) Fresen Z Anal Chem 332:1–6.  https://doi.org/10.1007/Bf00487020 Google Scholar
  43. 43.
    Stoeppler M, Matthes W (1978) Anal Chim Acta 98:389–392.  https://doi.org/10.1016/S0003-2670(01)84069-1 Google Scholar
  44. 44.
    Lansens P, Meuleman C, Baeyens W (1990) Anal Chim Acta 229:281–285.  https://doi.org/10.1016/S0003-2670(00)85140-5 Google Scholar
  45. 45.
    Sedlackova L, Kruzikova K, Svobodova Z (2014) Food Chem 150:360–365.  https://doi.org/10.1016/j.foodchem.2013.10.041 Google Scholar
  46. 46.
    Li X, Wang Y, Li BH, Feng CH, Chen YX, Shen ZY (2013) Environ Earth Sci 69:1537–1547.  https://doi.org/10.1007/s12665-012-1988-1 Google Scholar
  47. 47.
    Kim E, Noh S, Lee YG, Kundu SR, Lee BG, Park K, Han S (2014) Mar Chem 158:59–68.  https://doi.org/10.1016/j.marchem.2013.11.004 Google Scholar
  48. 48.
    Zhang T, Kucharzyk KH, Kim B, Deshusses MA, Hsu-Kim H (2014) Environ Sci Technol 48:9133–9141.  https://doi.org/10.1021/es500336j Google Scholar
  49. 49.
    Weiss HV, Shipman WH, Guttman MA (1976) Anal Chim Acta 81:211–217.  https://doi.org/10.1016/S0003-2670(00)89480-5 Google Scholar
  50. 50.
    Avramescu ML, Zhu J, Yumvihoze E, Hintelmann H, Fortin D, Lean DRS (2010) Environ Toxicol Chem 29:1256–1262.  https://doi.org/10.1002/etc.158 Google Scholar
  51. 51.
    Leermakers M, Nguyen HL, Kurunczi S, Vanneste B, Galletti S, Baeyens W (2003) Anal Bioanal Chem 377:327–333.  https://doi.org/10.1007/s00216-003-2116-6 Google Scholar
  52. 52.
    Fabbri D, Felisatti O, Lombardo M, Trombini C, Vassura I (1998) Sci Total Environ 213:121–128.  https://doi.org/10.1016/S0048-9697(98)00083-7 Google Scholar
  53. 53.
    Quevauviller P, Fortunati GU, Filippelli M, Bortoli A, Muntau H (1998) Appl Organomet Chem 12:531–539.  https://doi.org/10.1002/(Sici)1099-0739(199808/09)12:8/9%3C531::Aid-Aoc758%3E3.0.Co;2-I Google Scholar
  54. 54.
    Vazquez MJ, Carro AM, Lorenzo RA, Cela R (1997) Anal Chem 69:221–225.  https://doi.org/10.1021/ac960513h Google Scholar
  55. 55.
    Hintelmann H (1999) Chemosphere 39:1093–1105.  https://doi.org/10.1016/S0045-6535(99)00180-0 Google Scholar
  56. 56.
    Frohne T, Rinklebe J (2013) Water Air Soil Pollut 224:1591.  https://doi.org/10.1007/s11270-013-1591-4 Google Scholar
  57. 57.
    Wallschlager D, Desai MVM, Wilken RD (1996) Water Air Soil Pollut 90:507–520.  https://doi.org/10.1007/Bf00282665 Google Scholar
  58. 58.
    Davis A, Bloom NS, Hee SSQ (1997) Risk Anal 17:557–569.  https://doi.org/10.1111/j.1539-6924.1997.tb00897.x Google Scholar
  59. 59.
    Karlsson T, Skyllberg U (2003) Environ Sci Technol 37:4912–4918.  https://doi.org/10.1021/es034302n Google Scholar
  60. 60.
    Ravichandran M (2004) Chemosphere 55:319–331.  https://doi.org/10.1016/j.chemosphere.2003.11.011 Google Scholar
  61. 61.
    Khwaja AR, Bloom PR, Brezonik PL (2006) Environ Sci Technol 40:844–849.  https://doi.org/10.1021/es051805c Google Scholar
  62. 62.
    Zhong H, Wang WX (2008) Environ Pollut 151:222–230.  https://doi.org/10.1016/j.envpol.2007.01.049 Google Scholar
  63. 63.
    Skyllberg U, Qian J, Frech W, Xia K, Bleam WF (2003) Biogeochemistry 64:53–76.  https://doi.org/10.1023/A:1024904502633 Google Scholar
  64. 64.
    Fiorentino JC, Enzweiler J, Angelica RS (2011) Water Air Soil Pollut 221:63–75.  https://doi.org/10.1007/s11270-011-0769-x Google Scholar
  65. 65.
    Manohar DM, Krishnan KA, Anirudhan TS (2002) Water Res 36:1609–1619Google Scholar
  66. 66.
    Han Y, Kingston HM, Boylan HM, Rahman GMM, Shah S, Richter RC, Link DD, Bhandari S (2003) Anal Bioanal Chem 375:428–436.  https://doi.org/10.1007/s00216-002-1701-4 Google Scholar
  67. 67.
    Bloom NS, Preus E, Katon J, Hiltner M (2003) Anal Chim Acta 479:233–248.  https://doi.org/10.1016/S0003-2670(02)01550-7 Google Scholar
  68. 68.
    Saniewska D, Beldowska M (2017) Talanta 168:152–161.  https://doi.org/10.1016/j.talanta.2017.03.026 Google Scholar
  69. 69.
    Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Chemosphere 81:1369–1377.  https://doi.org/10.1016/j.chemosphere.2010.09.030 Google Scholar
  70. 70.
    Bacon JR, Davidson CM (2008) Analyst 133:25–46.  https://doi.org/10.1039/b711896a Google Scholar
  71. 71.
    Andrews JC (2006) Struct Bond 120:1–35.  https://doi.org/10.1007/430_011 Google Scholar
  72. 72.
    Kim CS, Bloom NS, Rytuba JJ, Brown GE (2003) Environ Sci Technol 37:5102–5108.  https://doi.org/10.1021/es0341485 Google Scholar
  73. 73.
    Reis AT, Coelho JP, Rucandio I, Davidson CM, Duarte AC, Pereira E (2015) Geoderma 237:98–104.  https://doi.org/10.1016/j.geoderma.2014.08.019 Google Scholar
  74. 74.
    Barnett MO, Harris LA, Turner RR, Henson TJ, Melton RE, Stevenson RJ (1995) Water Air Soil Pollut 80:1105–1108.  https://doi.org/10.1007/Bf01189771 Google Scholar
  75. 75.
    Martin JM, Nirel P, Thomas AJ (1987) Mar Chem 22:313–341.  https://doi.org/10.1016/0304-4203(87)90017-X Google Scholar
  76. 76.
    Gleyzes C, Tellier S, Astruc M (2002) Trac Trend Anal Chem 21:451–467.  https://doi.org/10.1016/S0165-9936(02)00603-9 Google Scholar
  77. 77.
    Brombach CC, Gajdosechova Z, Chen B, Brownlow A, Corns WT, Feldmann J, Krupp EM (2015) Anal Bioanal Chem 407:973–981.  https://doi.org/10.1007/s00216-014-8254-1 Google Scholar
  78. 78.
    Jagtap R, Krikowa F, Maher W, Foster S, Ellwood M (2011) Talanta 85:49–55.  https://doi.org/10.1016/j.talanta.2011.03.022 Google Scholar
  79. 79.
    Bloom NS, Colman JA, Barber L (1997) Fresen J Anal Chem 358:371–377.  https://doi.org/10.1007/s002160050432 Google Scholar
  80. 80.
    Rahman GMM, Kingston HM (2005) J Anal Atom Spectrom 20:183–191.  https://doi.org/10.1039/b404581e Google Scholar
  81. 81.
    Tseng CM, deDiego A, Martin FM, Donard OFX (1997) J Anal Atom Spectrom 12:629–635.  https://doi.org/10.1039/a700832e Google Scholar
  82. 82.
    Qian J, Skyllberg U, Tu Q, Bleam WF, Frech W (2000) Fresen J Anal Chem 367:467–473.  https://doi.org/10.1007/s002160000364 Google Scholar
  83. 83.
    Xiang WJ, Liu J, Chang M, Zheng CG (2012) Chem Eng J 200:91–96.  https://doi.org/10.1016/j.cej.2012.06.025 Google Scholar
  84. 84.
    Roulet M, Guimaraes JRD, Lucotte M (2001) Water Air Soil Pollut 128:41–60.  https://doi.org/10.1023/A:1010379103335 Google Scholar
  85. 85.
    Falter R (1999) Chemosphere 39:1051–1073.  https://doi.org/10.1016/S0045-6535(99)00178-2 Google Scholar
  86. 86.
    Quevauviller P (1999) Chemosphere 39:1153–1165.  https://doi.org/10.1016/S0045-6535(99)00184-8 Google Scholar
  87. 87.
    Carrasco L, Vassileva E (2015) Anal Chim Acta 853:167–178.  https://doi.org/10.1016/j.aca.2014.10.026 Google Scholar
  88. 88.
    Canario J, Antunes P, Lavrado J, Vale C (2004) Trac Trend Anal Chem 23:799–806.  https://doi.org/10.1016/j.trac.2004.08.009 Google Scholar
  89. 89.
    Dmytriw R, Mucci A, Lucotte M, Pichet P (1995) Water Air Soil Pollut 80:1099–1103.  https://doi.org/10.1007/Bf01189770 Google Scholar
  90. 90.
    Liang L, Horvat M, Feng XB, Shang LH, Lil H, Pang P (2004) Appl Organomet Chem 18:264–270.  https://doi.org/10.1002/aoc.617 Google Scholar
  91. 91.
    Horvat M, Bloom NS, Liang L (1993) Anal Chim Acta 281:135–152.  https://doi.org/10.1016/0003-2670(93)85348-N Google Scholar
  92. 92.
    Hammerschmidt CR, Fitzgerald WF (2001) Anal Chem 73:5930–5936.  https://doi.org/10.1021/ac010721w Google Scholar
  93. 93.
    Lorenzo RA, Vazquez MJ, Carro AM, Cela R (1999) Trac Trend Anal Chem 18:410–416.  https://doi.org/10.1016/S0165-9936(99)00118-1 Google Scholar
  94. 94.
    Tseng CM, DeDiego A, Martin FM, Amouroux D, Donard OFX (1997) J Anal Atom Spectrom 12:743–750.  https://doi.org/10.1039/a700956i Google Scholar
  95. 95.
    Bowles KC, Apte SC (2000) Anal Chim Acta 419:145–151.  https://doi.org/10.1016/S0003-2670(00)00997-1 Google Scholar
  96. 96.
    Ramalhosa E, Segade SR, Pereira E, Vale C, Duarte A (2001) Anal Chim Acta 448:135–143.  https://doi.org/10.1016/S0003-2670(01)01317-4 Google Scholar
  97. 97.
    Hintelmann H, Wilken RD (1993) Appl Organomet Chem 7:173–180.  https://doi.org/10.1002/aoc.590070303 Google Scholar
  98. 98.
    Cattani I, Spalla S, Beone GM, Del Re AAM, Boccelli R, Trevisan M (2008) Talanta 74:1520–1526.  https://doi.org/10.1016/j.talanta.2007.09.029 Google Scholar
  99. 99.
    Hintelmann H, Evans RD (1997) Fresen J Anal Chem 358:378–385.  https://doi.org/10.1007/s002160050433 Google Scholar
  100. 100.
    Bloom NS (1992) Can J Fish Aquat Sci 49:1010–1017.  https://doi.org/10.1139/F92-113 Google Scholar
  101. 101.
    Tseng CM, de Diego A, Pinaly H, Amouraoux D, Donard OFX (1998) J Anal Atom Spectrom 13:755–764.  https://doi.org/10.1039/A802344a Google Scholar
  102. 102.
    Jagtap R, Maher W (2015) Microchem J 121:65–98.  https://doi.org/10.1016/j.microc.2015.01.010 Google Scholar
  103. 103.
    Maggi C, Berducci MT, Bianchi J, Giani M, Campanella L (2009) Anal Chim Acta 641:32–36.  https://doi.org/10.1016/j.aca.2009.03.033 Google Scholar
  104. 104.
    Rezende PS, Silva NC, Moura WD, Windmoller CC (2018) Microchem J 140:199–206.  https://doi.org/10.1016/j.microc.2018.04.006 Google Scholar
  105. 105.
    Kim CS, Brown GE, Rytuba JJ (2000) Sci Total Environ 261:157–168.  https://doi.org/10.1016/S0048-9697(00)00640-9 Google Scholar
  106. 106.
    Sladek C, Gustin MS (2003) Appl Geochem 18:567–576.  https://doi.org/10.1016/S0883-2927(02)00115-4 Google Scholar
  107. 107.
    Kim CS, Rytuba JJ, Brown GE (2004) J Colloid Interf Sci 271:1–15.  https://doi.org/10.1016/S0021-9797(03)00330-8 Google Scholar
  108. 108.
    Biester H, Scholz C (1997) Environ Sci Technol 31:233–239.  https://doi.org/10.1021/es960369h Google Scholar
  109. 109.
    Bollen A, Wenke A, Biester H (2008) Water Res 42:91–100.  https://doi.org/10.1016/j.watres.2007.07.011 Google Scholar
  110. 110.
    Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) J Geochem Explor 80:95–104.  https://doi.org/10.1016/S0375-6742(03)00185-7 Google Scholar
  111. 111.
    Hojdova M, Navratil T, Rohovec J (2008) Bull Environ Contam Toxicol 80:237–241.  https://doi.org/10.1007/s00128-007-9352-y Google Scholar
  112. 112.
    Piani R, Covelli S, Biester H (2005) Appl Geochem 20:1546–1559.  https://doi.org/10.1016/j.apgeochem.2005.04.003 Google Scholar
  113. 113.
    Rallo M, Lopez-Anton MA, Perry R, Maroto-Valer MM (2010) Fuel 89:2157–2159.  https://doi.org/10.1016/j.fuel.2010.03.037 Google Scholar
  114. 114.
    Rumayor M, Diaz-Somoano M, Lopez-Anton MA, Martinez-Tarazona MR (2013) Talanta 114:318–322.  https://doi.org/10.1016/j.talanta.2013.05.059 Google Scholar
  115. 115.
    Reis AT, Coelho JP, Rodrigues SM, Rocha R, Davidson CM, Duarte AC, Pereira E (2012) Talanta 99:363–368.  https://doi.org/10.1016/j.talanta.2012.05.065 Google Scholar
  116. 116.
    Windmoller CC, Silva NC, Andrade PHM, Mendes LA, do Valle CM (2017) Anal Methods UK 9:2159–2167.  https://doi.org/10.1039/c6ay03041f Google Scholar
  117. 117.
    Fernandez-Martinez R, Rucandio I (2013) Anal Methods UK 5:4131–4137.  https://doi.org/10.1039/c3ay40566d Google Scholar
  118. 118.
    Tseng CM, De Diego A, Wasserman JC, Amouroux D, Donard OFX (1999) Chemosphere 39:1119–1136.  https://doi.org/10.1016/S0045-6535(99)00182-4 Google Scholar
  119. 119.
    Martin-Doimeadios RCR, Monperrus M, Krupp E, Amouroux D, Donard OFX (2003) Anal Chem 75:3202–3211.  https://doi.org/10.1021/ac026411a Google Scholar
  120. 120.
    Delgado A, Prieto A, Zuloaga O, de Diego A, Madariaga JM (2007) Anal Chim Acta 582:109–115.  https://doi.org/10.1016/j.aca.2006.08.051 Google Scholar
  121. 121.
    US EPA SW-846 Update V Mercury species fractionation and quantification by microwave assisted extraction, selective solvent extraction and/or solid phase extraction, method 3200, July 2014. https://www.epa.gov/sites/production/files/2015-12/documents/3200.pdf
  122. 122.
    Liu Y, Chai XL, Hao YX, Gao XF, Lu ZB, Zhao YC, Zhang J, Cai MH (2015) Environ Sci Pollut R 22:8603–8610.  https://doi.org/10.1007/s11356-014-3942-0 Google Scholar
  123. 123.
    He TR, Zhu YZ, Yin DL, Luo GJ, An YL, Yan HY, Qian XL (2015) Environ Sci Pollut R 22:5124–5138.  https://doi.org/10.1007/s11356-014-3864-x Google Scholar
  124. 124.
    Liang P, Lam CL, Chen Z, Wang HS, Shi JB, Wu SC, Wang WX, Zhang J, Wang HL, Wong MH (2013) J Soil Sediment 13:1301–1308.  https://doi.org/10.1007/s11368-013-0719-x Google Scholar
  125. 125.
    Schwartz GE, Redfern LK, Ikuma K, Gunsch CK, Ruhl LS, Vengosh A, Hsu-Kim H (2016) Environ Sci Proc Imp 18:1427–1439.  https://doi.org/10.1039/c6em00458j Google Scholar
  126. 126.
    Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ (2008) Anal Chim Acta 608:30–37.  https://doi.org/10.1016/j.aca.2007.12.001 Google Scholar
  127. 127.
    Yin YG, Chen M, Peng JF, Liu JF, Jiang GB (2010) Talanta 81:1788–1792.  https://doi.org/10.1016/j.talanta.2010.03.039 Google Scholar
  128. 128.
    Turker AR, Cabuk D, Yalcinkaya O (2013) Anal Lett 46:1155–1170.  https://doi.org/10.1080/00032719.2012.753608 Google Scholar
  129. 129.
    Yang FF, Li JH, Lu WH, Wen YY, Cai XQ, You JM, Ma JP, Ding YJ, Chen LX (2014) Electrophoresis 35:474–481.  https://doi.org/10.1002/elps.201300409 Google Scholar
  130. 130.
    Gao ZB, Ma XG (2011) Anal Chim Acta 702:50–55.  https://doi.org/10.1016/j.aca.2011.06.019 Google Scholar
  131. 131.
    Chen BB, Wu YL, Guo XQ, He M, Hu B (2015) J Anal Atom Spectrom 30:875–881.  https://doi.org/10.1039/c4ja00312h Google Scholar
  132. 132.
    Pietila H, Peramaki P, Piispanen J, Majuri L, Starr M, Nieminen T, Kantola M, Ukonmaanaho L (2014) Microchem J 112:113–118.  https://doi.org/10.1016/j.microc.2013.10.002 Google Scholar
  133. 133.
    Taylor VF, Carter A, Davies C, Jackson BP (2011) Anal Methods UK 3:1143–1148.  https://doi.org/10.1039/c0ay00528b Google Scholar
  134. 134.
    Margetinova J, Houserova-Pelcova P, Kuban V (2008) Anal Chim Acta 615:115–123.  https://doi.org/10.1016/j.aca.2008.03.061 Google Scholar
  135. 135.
  136. 136.
    Pietila H, Peramaki P, Piispanen J, Starr M, Nieminen T, Kantola M, Ukonmaanaho L (2015) Chemosphere 124:47–53.  https://doi.org/10.1016/j.chemosphere.2014.11.001 Google Scholar
  137. 137.
    Mao YX, Yin YG, Li YB, Liu GL, Feng XB, Jiang GB, Cai Y (2010) Environ Pollut 158:3378–3384.  https://doi.org/10.1016/j.envpol.2010.07.031 Google Scholar
  138. 138.
    Leng G, Yin H, Li SB, Chen Y, Dan DZ (2012) Talanta 99:631–636.  https://doi.org/10.1016/j.talanta.2012.06.051 Google Scholar
  139. 139.
    Stanisz E, Werner J, Matusiewicz H (2013) Microchem J 110:28–35.  https://doi.org/10.1016/j.microc.2013.01.006 Google Scholar
  140. 140.
    Bravo-Sanchez LR, Encinar JR, Martinez JIF, Sanz-Medel A (2004) Spectrochim Acta B 59:59–66.  https://doi.org/10.1016/j.sab.2003.10.001 Google Scholar
  141. 141.
    Krystek P, Ritsema R (2004) Appl Organomet Chem 18:640–645.  https://doi.org/10.1002/aoc.697 Google Scholar
  142. 142.
    Stoichev T, Martin-Doimeadios RCR, Tessier E, Amouroux D, Donard OFX (2004) Talanta 62:433–438.  https://doi.org/10.1016/j.talanta.2003.08.006 Google Scholar
  143. 143.
    Gomez-Ariza JL, Lorenzo F, Garcia-Barrera T, Sanchez-Rodas D (2004) Anal Chim Acta 511:165–173.  https://doi.org/10.1016/j.aca.2004.01.051 Google Scholar
  144. 144.
    Centineo G, Gonzalez EB, Sanz-Medel A (2004) J Chromatogr A 1034:191–197.  https://doi.org/10.1016/j.chroma.2004.01.051 Google Scholar
  145. 145.
    Munoz J, Gallego M, Valcarcel M (2004) J Chromatogr A 1055:185–190.  https://doi.org/10.1016/j.chroma.2004.09.026 Google Scholar
  146. 146.
    Bloxham MJ, Gachanja A, Hill SJ, Worsfold PJ (1996) J Anal Atom Spectrom 11:145–148.  https://doi.org/10.1039/ja9961100145 Google Scholar
  147. 147.
    Ho YS, Uden PC (1994) J Chromatogr A 688:107–116.  https://doi.org/10.1016/S0021-9673(94)89019-6 Google Scholar
  148. 148.
    Sarzanini C, Sacchero G, Aceto M, Abollino O, Mentasti E (1994) Anal Chim Acta 284:661–667.  https://doi.org/10.1016/0003-2670(94)85070-4 Google Scholar
  149. 149.
    Bramanti E, Lomonte C, Onor M, Zamboni R, D’Ulivo A, Raspi G (2005) Talanta 66:762–768.  https://doi.org/10.1016/j.talanta.2004.12.031 Google Scholar
  150. 150.
    Wan CC, Chen CS, Jiang SJ (1997) J Anal Atom Spectrom 12:683–687.  https://doi.org/10.1039/a605765i Google Scholar
  151. 151.
    Ackley KL, Sutton KL, Caruso JA (2000) J Anal Atom Spectrom 15:1069–1073.  https://doi.org/10.1039/b000986p Google Scholar
  152. 152.
    Shum SCK, Pang HM, Houk RS (1992) Anal Chem 64:2444–2450.  https://doi.org/10.1021/ac00044a025 Google Scholar
  153. 153.
    Blanco RM, Villanueva MT, Uria JES, Sanz-Medel A (2000) Anal Chim Acta 419:137–144.  https://doi.org/10.1016/S0003-2670(00)01002-3 Google Scholar
  154. 154.
    Dong LM, Yan XP, Li Y, Jiang Y, Wang SW, Jiang DQ (2004) J Chromatogr A 1036:119–125.  https://doi.org/10.1016/j.chroma.2004.02.070 Google Scholar
  155. 155.
    Chen XP, Han C, Cheng HY, Wang YC, Liu JH, Xu ZG, Hu L (2013) J Chromatogr A 1314:86–93.  https://doi.org/10.1016/j.chroma.2013.08.104 Google Scholar
  156. 156.
    Tu Q, Qvarnstrom J, Frech W (2000) Analyst 125:705–710.  https://doi.org/10.1039/a908880f Google Scholar
  157. 157.
    Lee TH, Jiang SJ (2000) Anal Chim Acta 413:197–205.  https://doi.org/10.1016/S0003-2670(00)00807-2 Google Scholar
  158. 158.
    da Rocha MS, Soldado AB, Blanco-Gonzalez E, Sanz-Medel A (2000) J Anal Atom Spectrom 15:513–518Google Scholar
  159. 159.
    da Rocha MS, Soldado AB, Blanco-Gonzalez E, Sanz-Medel A (2000) Biomed Chromatogr 14:6–63Google Scholar
  160. 160.
    Medina I, Rubi E, Mejuto MC, Cela R (1993) Talanta 40:1631–1636.  https://doi.org/10.1016/0039-9140(93)80077-5 Google Scholar
  161. 161.
    Mercader-Trejo F, de San Miguel ER, de Gyves J (2005) J Anal Atom Spectrom 20:1212–1217.  https://doi.org/10.1039/b505000f Google Scholar
  162. 162.
    Mercader-Trejo F, Herrera-Basurto R, de San Miguel ER, de Gyves J (2011) Int J Environ Anal Chem 91:1062–1076.  https://doi.org/10.1080/03067311003782658 Google Scholar
  163. 163.
    Nguyen TH, Boman J, Leermakers M, Baeyens W (1998) X-ray Spectrom 27:277–282.  https://doi.org/10.1002/(Sici)1097-4539(199807/08)27:4%3C277::Aid-Xrs297%3E3.0.Co;2-U Google Scholar
  164. 164.
    Koplik R, Klimesova I, Malisova K, Mestek O (2014) Czech J Food Sci 32:249–259Google Scholar
  165. 165.
    Bulska E, Baxter DC, Frech W (1991) Anal Chim Acta 249:545–554.  https://doi.org/10.1016/S0003-2670(00)83032-9 Google Scholar
  166. 166.
    Tao H, Murakami T, Tominaga M, Miyazaki A (1998) J Anal Atom Spectrom 13:1085–1093.  https://doi.org/10.1039/a803369b Google Scholar
  167. 167.
    Uria JES, Sanz-Medel A (1998) Talanta 47:509–524Google Scholar
  168. 168.
    Harrington CF (2000) Trac Trend Anal Chem 19:167–179.  https://doi.org/10.1016/S0165-9936(99)00190-9 Google Scholar
  169. 169.
    Kadlecova M, Daye M, Ouddane B (2014) Anal Lett 47:697–706.  https://doi.org/10.1080/00032719.2013.848364 Google Scholar
  170. 170.
    Lambertsson L, Lundberg E, Nilsson M, Frech W (2001) J Anal Atom Spectrom 16:1296–1301.  https://doi.org/10.1039/b106878b Google Scholar
  171. 171.
    Park JS, Lee JS, Kim GB, Cha JS, Shin SK, Kang HG, Hong EJ, Chung GT, Kim YH (2010) Water Air Soil Pollut 207:391–401.  https://doi.org/10.1007/s11270-009-0144-3 Google Scholar
  172. 172.
    Caricchia AM, Minervini G, Soldati P, Chiavarini S, Ubaldi C, Morabito R (1997) Microchem J 55:44–55.  https://doi.org/10.1006/mchj.1996.1357 Google Scholar
  173. 173.
    Hintelmann H, Evans RD, Villeneuve JY (1995) J Anal Atom Spectrom 10:619–624.  https://doi.org/10.1039/ja9951000619 Google Scholar
  174. 174.
    Lin LY, Chang LF, Jiang SJ (2008) J Agric Food Chem 56:6868–6872.  https://doi.org/10.1021/jf801241w Google Scholar
  175. 175.
    de Souza SS, Rodrigues JL, Souza VCD, Barbosa F (2010) J Anal Atom Spectrom 25:79–83.  https://doi.org/10.1039/b911696f Google Scholar
  176. 176.
    Houserova P, Matejicek D, Kuban V (2007) Anal Chim Acta 596:242–250.  https://doi.org/10.1016/j.aca.2007.06.020 Google Scholar
  177. 177.
    Rahman GMM, Kingston HM (2004) Anal Chem 76:3548–3555.  https://doi.org/10.1021/Ac030407x Google Scholar
  178. 178.
    Rai R, Maher W, Kirkowa F (2002) J Anal Atom Spectrom 17:1560–1563.  https://doi.org/10.1039/b208041a Google Scholar
  179. 179.
    Tu Q, Johnson W, Buckley B (2003) J Anal Atom Spectrom 18:696–701.  https://doi.org/10.1039/b300992k Google Scholar
  180. 180.
    Kuban P, Houserova P, Kuban P, Hauser PC, Kuban V (2007) Electrophoresis 28:58–68.  https://doi.org/10.1002/elps.200600457 Google Scholar
  181. 181.
    Soliman EM, Saleh MB, Ahmed SA (2006) Talanta 69:55–60.  https://doi.org/10.1016/j.talanta.2005.08.070 Google Scholar
  182. 182.
    Jiang HM, Hu B, Jiang ZC, Qin YC (2006) Talanta 70:7–13.  https://doi.org/10.1016/j.talanta.2006.02.047 Google Scholar
  183. 183.
    Landi S, Fagioli F, Locatelli C (1992) J AOAC Int 75:1023–1028Google Scholar
  184. 184.
    Oda CE, Ingle JD (1981) Anal Chem 53:2305–2309.  https://doi.org/10.1021/Ac00237a040 Google Scholar
  185. 185.
    Leopold K, Foulkes M, Worsfold PJ (2009) Trac Trend Anal Chem 28:426–435.  https://doi.org/10.1016/j.trac.2009.02.004 Google Scholar
  186. 186.
    Logar M, Horvat M, Akagi H, Pihlar B (2002) Anal Bioanal Chem 374:1015–1021.  https://doi.org/10.1007/s00216-002-1501-x Google Scholar
  187. 187.
    Labatzke T, Schlemmer G (2004) Anal Bioanal Chem 378:1075–1082.  https://doi.org/10.1007/s00216-003-2416-x Google Scholar
  188. 188.
    Campbell MJ, Vermeir G, Dams R, Quevauviller P (1992) J Anal Atom Spectrom 7:617–621.  https://doi.org/10.1039/ja9920700617 Google Scholar
  189. 189.
    Seibert EL, Dressler VL, Pozebon D, Curtius AJ (2001) Spectrochim Acta B 56:1963–1971.  https://doi.org/10.1016/S0584-8547(01)00334-2 Google Scholar
  190. 190.
    Monperrus M, Tessier E, Veschambre S, Amouroux D, Donard O (2005) Anal Bioanal Chem 381:854–862.  https://doi.org/10.1007/s00216-004-2973-7 Google Scholar
  191. 191.
    Jia XY, Han Y, Liu XL, Duan TC, Chen HT (2011) Spectrochim Acta B 66:88–92.  https://doi.org/10.1016/j.sab.2010.12.003 Google Scholar
  192. 192.
    Jia XY, Gong DR, Han Y, Wei C, Duan TC, Chen HT (2012) Talanta 88:724–729.  https://doi.org/10.1016/j.talanta.2011.10.026 Google Scholar
  193. 193.
    Cheng HY, Wu CL, Shen LH, Liu JH, Xu ZG (2014) Anal Chim Acta 828:9–16.  https://doi.org/10.1016/j.aca.2014.04.042 Google Scholar
  194. 194.
    Nevado JJB, Martin-Doimeadios RCR, Krupp EM, Bernardo FJG, Farinas NR, Moreno MJ, Wallace D, Roper MJP (2011) J Chromatogr A 1218:4545–4551.  https://doi.org/10.1016/j.chroma.2011.05.036 Google Scholar
  195. 195.
    Zhao YQ, Zheng JP, Fang L, Lin Q, Wu YN, Xue ZM, Fu FF (2012) Talanta 89:280–285.  https://doi.org/10.1016/j.talanta.2011.12.029 Google Scholar
  196. 196.
    Li BH (2011) Anal Methods UK 3:116–121.  https://doi.org/10.1039/c0ay00480d Google Scholar
  197. 197.
    Trujillo IS, Alonso EV, Pavon JMC, de Torres AG (2015) J Anal Atom Spectrom 30:2429–2440.  https://doi.org/10.1039/c5ja00335k Google Scholar
  198. 198.
    Garcia-Ordiales E, Covelli S, Rico JM, Roqueni N, Fontolan G, Flor-Blanco G, Cienfuegos P, Loredo J (2018) Chemosphere 198:281–289.  https://doi.org/10.1016/j.chemosphere.2018.01.146 Google Scholar
  199. 199.
    Nevado JJB, Martin-Doimeadios RCR, Bernardo FJG, Moreno MJ (2005) J Chromatogr A 1093:21–28.  https://doi.org/10.1016/j.chroma.2005.07.054 Google Scholar
  200. 200.
    Cai Y, Monsalud S, Furton KG, Jaffe R, Jones RD (1998) Appl Organomet Chem 12:565–569.  https://doi.org/10.1002/(Sici)1099-0739(199808/09)12:8/9%3C565::Aid-Aoc762%3E3.0.Co;2-K Google Scholar
  201. 201.
    Nevado JJB, Martin-Doimeadios RCR, Moreno MJ (2009) Sci Total Environ 407:2372–2382.  https://doi.org/10.1016/j.scitotenv.2008.12.006 Google Scholar
  202. 202.
    Martin-Doimeadios RCR, Krupp E, Amouroux D, Donard OFX (2002) Anal Chem 74:2505–2512.  https://doi.org/10.1021/ac011157s Google Scholar
  203. 203.
    Rodrigues JL, Alvarez CR, Farinas NR, Nevado JJB, Barbosa F, Martin-Doimeadios RCR (2011) J Anal Atom Spectrom 26:436–442.  https://doi.org/10.1039/c004931j Google Scholar
  204. 204.
    Moreno MJ, Pacheco-Arjona J, Rodriguez-Gonzalez P, Preud’Homme H, Amouroux D, Donard OFX (2006) J Mass Spectrom 41:1491–1497.  https://doi.org/10.1002/jms.1120 Google Scholar
  205. 205.
    Sanchez-Rodas D, Corns WT, Chen B, Stockwell PB (2010) J Anal Atom Spectrom 25:933–946.  https://doi.org/10.1039/b917755h Google Scholar
  206. 206.
    Cano-Pavon JM, De Torres AG, Sanchez-Rojas F, Canada-Rudner P (1999) Int J Environ Anal Chem 75:93–106.  https://doi.org/10.1080/03067319908047303 Google Scholar
  207. 207.
    Heumann KG, Gallus SM, Radlinger G, Vogl J (1998) Spectrochim Acta B 53:273–287.  https://doi.org/10.1016/S0584-8547(97)00134-1 Google Scholar
  208. 208.
    Castillo A, Roig-Navarro AF, Pozo OJ (2006) Anal Chim Acta 577:18–25.  https://doi.org/10.1016/j.aca.2006.06.024 Google Scholar
  209. 209.
    Guo W, Hu SH, Wang XJ, Zhang JY, Jin LL, Zhu ZL, Zhang HF (2011) J Anal Atom Spectrom 26:1198–1203.  https://doi.org/10.1039/c1ja00005e Google Scholar
  210. 210.
    Jian L, Goessler W, Irgolic KJ (2000) Fresen J Anal Chem 366:48–53.  https://doi.org/10.1007/s002160050010 Google Scholar
  211. 211.
    Brombach CC, Chen B, Corns WT, Feldmann J, Krupp EM (2015) Spectrochim Acta B 105:103–108.  https://doi.org/10.1016/j.sab.2014.09.014 Google Scholar
  212. 212.
    Guzman-Mar JL, Hinojosa-Reyes L, Serra AM, Hernandez-Ramirez A, Cerda V (2011) Anal Chim Acta 708:11–18.  https://doi.org/10.1016/j.aca.2011.09.037 Google Scholar
  213. 213.
    Ai X, Wang Y, Hou XD, Yang L, Zheng CB, Wu L (2013) Analyst 138:3494–3501.  https://doi.org/10.1039/c3an00010a Google Scholar
  214. 214.
    Harrington CF, Romeril J, Catterick T (1998) Rapid Commun Mass Spectrom 12:911–916.  https://doi.org/10.1002/(Sici)1097-0231(19980731)12:14%3C911::Aid-Rcm254%3E3.0.Co;2-X Google Scholar
  215. 215.
    Pena-Pereira F, Lavilla I, Bendicho C, Vidal L, Canals A (2009) Talanta 78:537–541.  https://doi.org/10.1016/j.talanta.2008.12.003 Google Scholar
  216. 216.
    Li PJ, He M, Chen BB, Hu B (2015) J Chromatogr A 1415:48–56.  https://doi.org/10.1016/j.chroma.2015.08.062 Google Scholar
  217. 217.
    Chen C, Peng MT, Hou XD, Zheng CB, Long Z (2013) Anal Methods UK 5:1185–1191.  https://doi.org/10.1039/c2ay26214b Google Scholar
  218. 218.
    Li PJ, Zhang X, Hu B (2011) J Chromatogr A 1218:9414–9421.  https://doi.org/10.1016/j.chroma.2011.10.071 Google Scholar
  219. 219.
    Ting Y, Chen C, Ch’ng BL, Wang YL, Hsi HC (2018) J Hazard Mater 354:116–124.  https://doi.org/10.1016/j.jhazmat.2018.04.074 Google Scholar
  220. 220.
    Gilmour C, Bell JT, Soren AB, Riedel G, Riedel G, Kopec AD, Bodaly RA (2018) Sci Total Environ 640:555–569.  https://doi.org/10.1016/j.scitotenv.2018.05.276 Google Scholar
  221. 221.
    Blum PW, Hershey AE, Tsui MTK, Hammerschmidt CR, Agather AM (2018) Biogeochemistry 137:181–195.  https://doi.org/10.1007/s10533-017-0408-8 Google Scholar
  222. 222.
    Cesario R, Hintelmann H, Mendes R, Eckey K, Dimock B, Araujo B, Mota AM, Canario J (2017) Environ Pollut 226:297–307.  https://doi.org/10.1016/j.envpol.2017.03.075 Google Scholar
  223. 223.
    Valdes C, Black FJ, Stringham B, Collins JN, Goodman JR, Saxton HJ, Mansfield CR, Schmidt JN, Yang S, Johnson WP (2017) Environ Sci Technol 51:4887–4896.  https://doi.org/10.1021/acs.est.6b05790 Google Scholar
  224. 224.
    Kodamatani H, Maeda C, Balogh SJ, Nollet YH, Kanzaki R, Tomiyasu T (2017) Chemosphere 173:380–386.  https://doi.org/10.1016/j.chemosphere.2017.01.053 Google Scholar
  225. 225.
    Cesario R, Monteiro CE, Nogueira M, O’Driscoll NJ, Caetano M, Hintelmann H, Mota AM, Canario J (2016) Water Air Soil Pollut 227:475.  https://doi.org/10.1007/s11270-016-3179-2 Google Scholar
  226. 226.
    Mendes LA, de Lena JC, do Valle CM, Fleming PM, Windmoller CC (2016) Appl Geochem 75:32–43.  https://doi.org/10.1016/j.apgeochem.2016.10.011 Google Scholar
  227. 227.
    Monteiro CE, Cesario R, O’Driscoll NJ, Nogueira M, Valega M, Caetano M, Canario J (2016) Mar Pollut Bull 104:162–170.  https://doi.org/10.1016/j.marpolbul.2016.01.042 Google Scholar
  228. 228.
    Liu B, Schaider LA, Mason RP, Shine JP, Rabalais NN, Senn DB (2015) Estuar Coast Shelf Sci 159:50–59.  https://doi.org/10.1016/j.ecss.2015.03.030 Google Scholar
  229. 229.
    Ma X, Yin YG, Shi JB, Liu JF, Jiang GB (2014) Anal Methods UK 6:164–169.  https://doi.org/10.1039/c3ay41625a Google Scholar
  230. 230.
    Kodamatani H, Tomiyasu T (2013) J Chromatogr A 1288:155–159.  https://doi.org/10.1016/j.chroma.2013.02.004 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied Analytical ChemistryUniversity Duisburg-EssenEssenGermany

Personalised recommendations