Advertisement

Chromatographia

, Volume 82, Issue 1, pp 221–233 | Cite as

Mass Spectrometry-Compatible Enantiomeric Separations of 100 Pesticides Using Core–Shell Chiral Stationary Phases and Evaluation of Iterative Curve Fitting Models for Overlapping Peaks

  • Garrett Hellinghausen
  • Elizabeth R. Readel
  • M. Farooq Wahab
  • J. T. Lee
  • Diego A. Lopez
  • Choyce A. Weatherly
  • Daniel W. ArmstrongEmail author
Original
Part of the following topical collections:
  1. 50th Anniversary Commemorative Issue

Abstract

Pesticides are often chiral, and their isomers have different activity, toxicity, metabolism, and degradation properties. Perhaps, the most complex are the synthetic pyrethroid insecticides that have up to 8 stereoisomers, but not all are active. Pyrethroids are toxic to aquatic invertebrates and non-targeted species like honey bees since they persist in the environment. Extensive biological studies of the pyrethroid enantiomers are limited. Possibly, this is because liquid chromatography enantiomeric methods for these studies often have limitations with mass spectrometry (MS) compatibility. In this study, an effective methodology was developed with MS compatible solvents to evaluate several core–shell (superficially porous particle, SPP) chiral stationary phases (CSPs) for the enantiomeric separation of several classes of chiral pesticides. The CSP with the broadest selectivity or spectrum amongst all pesticide classes was the hydroxypropyl-β-cyclodextrin. The other CSPs (cyclofructan, macrocyclic glycopeptide, and quinine-based selectors) had more selective applications including separations of the pesticides with amine or acid functionalities. Overall, 74 of 100 pesticides were baseline-separated. Most of the remaining ones had multiple stereogenic centers and had only one overlapping pair. Such cases were evaluated with a convenient peak area extraction protocol by iterative curve fitting. This approach will lead to more facile enantiomeric analyses where MS is needed to overcome complex matrices and reduce extensive method optimization.

Graphical abstract

Keywords

Fungicides Herbicides Insecticides Pyrethroids Superficially porous particles (SPP) 

Notes

Acknowledgements

We thank AZYP, LLC, for their technical support for HPLC chiral column technology. We also thank Siqi Du for her MS expertise. This work was supported by the Robert A. Welch Foundation (Y0026).

Compliance with Ethical Standards

Conflict of Interest

The authors J.T. Lee, D.A. Lopez, and D.W. Armstrong declare the following competing financial interest(s): CDShell-RSP, NicoShell, LarihcShell-P, Q-Shell, TeicoShell, and VancoShell are trademarked products of AZYP, LLC.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10337_2018_3604_MOESM1_ESM.pdf (387 kb)
Supplementary material 1 (PDF 386 KB)

References

  1. 1.
    IUPAC (1997) Compendium of Chemical Terminology, 2nd edn. (the “Gold Book”). Blackwell Scientific Publications, OxfordGoogle Scholar
  2. 2.
    Matell M (1953) Ark Kemi 6:365–373Google Scholar
  3. 3.
    Schneiderheinze JM, Armstrong DW, Berthod A (1999) Chirality 11:330–337CrossRefGoogle Scholar
  4. 4.
    Burden RS, Carter GA, Clark T, Cooke DT, Croker SJ, Deas AHB, Hedden P, James CS, Lenton JR (1987) Pestic Sci 21:253–267CrossRefGoogle Scholar
  5. 5.
    Calcaterra A, D’Acquarica I (2018) J Pharm Biomed Anal 147:323–340CrossRefGoogle Scholar
  6. 6.
    Armstrong DW, Chang CD, Li WY (1990) J Agric Food Chem 38:1674–1677CrossRefGoogle Scholar
  7. 7.
    Armstrong DW, Reid GL III, Hilton ML, Chang CD (1993) Environ Pollut 79:51–58CrossRefGoogle Scholar
  8. 8.
    Liu W, Gan J, Schlenk D, Jury WA (2005) Proc Natl Acad Sci USA 102:701–706Google Scholar
  9. 9.
    Ye J, Zhao M, Liu J, Liu W (2010) Environ Pollut 158:2371–2383CrossRefGoogle Scholar
  10. 10.
    Perez de Albuquerque NC, Carrão DB, Habenschus MD, Moraes de Oliveira AR (2018) J Pharm Biomed Anal 147:89–109CrossRefGoogle Scholar
  11. 11.
    Schleier JJ III, Peterson RKD (2011) Pyrethrins and pyrethroid insecticides. In: Lopez Ó, Fernández-Bolaños JG (eds) Green Trends in Insect Control, RSC Green Chemistry, No. 11. RSC Publishing, Cambridge, pp 94–131CrossRefGoogle Scholar
  12. 12.
    Miyamoto J (1976) Environ Health Perspect 14:15–28CrossRefGoogle Scholar
  13. 13.
    Ma Y, Chen L, Lu X, Chu H, Xu C, Liu W (2009) Ecotoxicol Environ Saf 72:1913–1918CrossRefGoogle Scholar
  14. 14.
    Oberhauser KS, Brinda SJ, Weaver S, Moon RD, Manweiler SA, Read N (2006) Environ Entomol 35:1626–1634CrossRefGoogle Scholar
  15. 15.
    Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Apidologie 441:312–331CrossRefGoogle Scholar
  16. 16.
    Vontas J, Grigoraki L, Morgan J, Tsakireli D, Fuseini G, Segura L, Niemczura de Carvalho J, Nguema R, Weetman D, Slotman MA, Hemingway J (2018) Proc Natl Acad Sci USA 115(18):4619–4624Google Scholar
  17. 17.
    Chen ZM, Wang YH (1996) J Chromatogr A 754:367–395CrossRefGoogle Scholar
  18. 18.
    Alder L, Greulich K, Kempe G, Vieth B (2006) Mass Spectrom Rev 25:838–865CrossRefGoogle Scholar
  19. 19.
    Ye J, Wu J, Liu W (2009) Trends Anal Chem 28:1148–1163CrossRefGoogle Scholar
  20. 20.
    Okamoto M (2012) Direct chiral separation of pyrethroid isomers by HPLC with chiral stationary phases In: Knaak JB, Timchalk C, Tornero-Velez R (eds) Parameters for Pesticide QSAR and PBPK/PD Models for Human Risk Assessment, ACS Symposium Series, vol 1099, pp 31–40Google Scholar
  21. 21.
    Ȏi N, Kitahara H, Kira R (1990) J Chromatogr A 515:441–450CrossRefGoogle Scholar
  22. 22.
    Lisseter SG, Hambling SG (1991) J Chromatogr A 539:207–210CrossRefGoogle Scholar
  23. 23.
    Armstrong DW, Chang CD, Lee SH (1991) J Chromatogr A 539:83–90CrossRefGoogle Scholar
  24. 24.
    Kutter JP, Class TJ (1992) Chromatographia 33:103–112CrossRefGoogle Scholar
  25. 25.
    Zhang H, Qian M, Wang X, Wang X, Xu H, Wang Q, Wang M (2012) J Sep Sci 35:773–781CrossRefGoogle Scholar
  26. 26.
    Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X, Liang X, Zheng Y (2012) J Chrom A 1224:51–60CrossRefGoogle Scholar
  27. 27.
    Patel DC, Wahab MF, Armstrong DW, Breitbach ZS (2016) J Chromatogr A 1467:2–18CrossRefGoogle Scholar
  28. 28.
    Hellinghausen G, Lee JT, Weatherly CA, Lopez DA, Armstrong DW (2017) Drug Test Anal 9:944–948CrossRefGoogle Scholar
  29. 29.
    Hellinghausen G, Roy D, Wang Y, Lee JT, Lopez DA, Weatherly CA, Armstrong DW (2017) Talanta 181:132–141CrossRefGoogle Scholar
  30. 30.
    Barhate CL, Lopez DA, Makarov AA, Bu X, Morris WJ, Lekhal A, Hartman R, Armstrong DW, Regalado EL (2018) J Chrom A 1539:87–92CrossRefGoogle Scholar
  31. 31.
    Hellinghausen G, Roy D, Lee JT, Wang Y, Weatherly CA, Lopez DA, Nguyen KA, Armstrong JD, Armstrong DW (2018) J Pharm Biomed Anal 155:70–81CrossRefGoogle Scholar
  32. 32.
    Patel DC, Breitbach ZS, Yu J, Nguyen KA, Armstrong DW (2017) Anal Chim Acta 963:164–174CrossRefGoogle Scholar
  33. 33.
    Gritti F, Guiochon G (2012) LC GC N Am 30:586–595Google Scholar
  34. 34.
    Broeckhoven K, Cabooter D, Desmet G (2013) J Pharm Anal 3:313–323CrossRefGoogle Scholar
  35. 35.
    DeStefano JJ, Schuster SA, Lawhorn JM, Kirkland JJ (2012) J Chromatogr A 1258:76–83CrossRefGoogle Scholar
  36. 36.
    Kotoni D, Ciogli A, Molinaro C, D’Acquarica I, Kocergin J, Szczerba T, Ritchie H, Villani C, Gasparrini F (2012) Anal Chem 84:6805–6813CrossRefGoogle Scholar
  37. 37.
    Ciogli A, Ismail OH, Mazzoccanti G, Villani C, Gasparrini F (2018) J Sep Sci 41:1307–1318CrossRefGoogle Scholar
  38. 38.
    Xu C, Armstrong DW (2013) Anal Chim Acta 792:1–9CrossRefGoogle Scholar
  39. 39.
    Armstrong DW, Liu Y, Ekborg-Ott KH (1995) Chirality 7:474–497CrossRefGoogle Scholar
  40. 40.
    Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR (1994) Anal Chem 66:1473–1484CrossRefGoogle Scholar
  41. 41.
    Sun P, Wang C, Breitbach ZS, Zhang Y, Armstrong DW (2009) Anal Chem 81:10215–10226CrossRefGoogle Scholar
  42. 42.
    Bicking MKL (2006) LC GC N Am 24:605–616Google Scholar
  43. 43.
    Chesler SN, Cram SP (1973) Anal Chem 45:1354–1359CrossRefGoogle Scholar
  44. 44.
    Anderson AH, Gibb TC, Littlewood AB (1970) Anal Chem 42:434–440CrossRefGoogle Scholar
  45. 45.
    Amigo JM, Skov T, Bro R (2010) Chem Rev 110:4582–4605CrossRefGoogle Scholar
  46. 46.
    Kemmer G, Keller S (2010) Nat Protoc 5:267–281CrossRefGoogle Scholar
  47. 47.
    Asher BJ, D’Agostino LA, Way JD, Wong CS, Harynuk JJ (2009) Chemosphere 75:1042–1048CrossRefGoogle Scholar
  48. 48.
    Wahab MF, Wimalasinghe RM, Wang Y, Barhate CL, Patel DC, Armstrong DW (2016) Anal Chem 88:8821–8826CrossRefGoogle Scholar
  49. 49.
    Patel DC, Wahab MF, O’Haver TC, Armstrong DW (2018) Anal Chem 90:3349–3356CrossRefGoogle Scholar
  50. 50.
    Kraehmer H, Laber B, Rosinger C, Schulz A (2014) Plant Physiol 166:1119–1131CrossRefGoogle Scholar
  51. 51.
    Boehm RE, Martire DE, Armstrong DW (1988) Anal Chem 60:522–528CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonUSA
  2. 2.AZYP LLCArlingtonUSA

Personalised recommendations