Chromatographia

, Volume 81, Issue 4, pp 585–594 | Cite as

Retention Modeling in an Extended Knowledge Space

Original
  • 65 Downloads

Abstract

The goal of this manuscript was to examine the expansibility of the prediction ranges of the software, DryLab with small molecules. The final part of method development is method optimization in which we aim to cover a relatively narrow range where a promising region can be found. Understanding peak movements, DryLab proved to be a powerful tool but the prediction range is limited by the recommendations of the manufacturer. We aimed to examine these limits in a huge knowledge space for enhancing the speed of method fine tuning.

Keywords

DryLab Design space QbD Retention time modeling 

Notes

Acknowledgements

Authors thank Imre Kapui Egis PLC., for his contribution and László Hunyadvári for constructing some of the figures in this work.

References

  1. 1.
    ICH Q8 (R2), Guidance for Industry (2016) Pharmaceutical Development. US Food and Drug Administration, Maryland. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. Accessed 17 May 2016
  2. 2.
    Hewitt EF, Lukulay P, Galushko S (2006) J Chromatogr A 1107:79–87CrossRefGoogle Scholar
  3. 3.
    Biswas KM, Castle BC, Olsen BA, Risley DS, Skibic MJ, Wright PB (2009) J Pharm Biomed Anal 49:692–701CrossRefGoogle Scholar
  4. 4.
    Molnar I (2002) J Chromatogr A 965:175–194CrossRefGoogle Scholar
  5. 5.
    Horvath C, Melander W, Molnar I (1976) J Chromatogr 125:129–156CrossRefGoogle Scholar
  6. 6.
    Horvath C, Melander W, Molnar I (1977) Anal Chem 49:142–153CrossRefGoogle Scholar
  7. 7.
    Horvath C, Melander W, Molnar I, Molnar P (1977) Anal Chem 49:2295–2305CrossRefGoogle Scholar
  8. 8.
    Molnár I (2012) DryLab® 4 User’s ManualGoogle Scholar
  9. 9.
    Snyder LR, Dolan JW, Lommen DC (1989) J Chromatogr 485:65–89CrossRefGoogle Scholar
  10. 10.
    Dolan JW, Lommen DC, Snyder LR (1989) J Chromatogr 485:91–112CrossRefGoogle Scholar
  11. 11.
    Dolan JW (2002) J Chromatogr A 965:195–205CrossRefGoogle Scholar
  12. 12.
    Lewis JA, Lommen DC, Raddatz WD, Dolan JW, Snyder LR (1992) Molnar. J Chromatogr 592:183–195CrossRefGoogle Scholar
  13. 13.
    Dolan JW, Lommen DC, Snyder LR (1990) J Chromatogr 535:14–55CrossRefGoogle Scholar
  14. 14.
    Glajch JL, Kirkland JJ, Squire KM, Minor JM (1980) J Chromatogr 199:57–79CrossRefGoogle Scholar
  15. 15.
    Kormány R, Fekete J, Guillarme D, Fekete S (2014) J Pharm Biomed Anal 89:67–75CrossRefGoogle Scholar
  16. 16.
    Schmidt AH, Molnár I (2013) J Pharm Biomed Anal 78–79:65–74CrossRefGoogle Scholar
  17. 17.
    Hansch C, Leo A, Hoekman D (1995) Exploring QSAR. [2] Hydrophobic, electronic, and steric constants. American Chemical Society, WashingtonGoogle Scholar
  18. 18.
    Windholz M (1983) The merck index. Merck & Company, KenilworthGoogle Scholar
  19. 19.
    Wagner L, Kenreigh C (2007) Amlodipine. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, Amsterdam.  https://doi.org/10.1016/B978-008055232-3.61217-6
  20. 20.
    Austin RP, Davis AM, Manners CN (1995) J Pharm Sci 84:1180–1183CrossRefGoogle Scholar
  21. 21.
    Balen GP, Caron G, Ermondi G, Pagliara A, Grandi T, Bouchard G, Fruttero R, Carrupt PA, Testa B (2001) Pharm Res 18:694–701CrossRefGoogle Scholar
  22. 22.
    Takács-Novák K, Box KJ, Avdeef A (1997) Int J Pharm 151:235–248CrossRefGoogle Scholar
  23. 23.
    Sangster J (1994) LOGKOW—a Databank of evaluated octanol-water partition coefficients. Sangster Research Laboratories, MontrealGoogle Scholar
  24. 24.
    Sangster J (1993) LOGKOW—a databank of evaluated octanol-water partition coefficients. Sangster Research Laboratories, MontrealGoogle Scholar
  25. 25.
    Popovic G, Cakar M, Agbaba D (2009) J Pharm Biomed Anal 49:42–47CrossRefGoogle Scholar
  26. 26.
    Andersen DN, Larsen PB (2013) Survey of parabens. Danish Ministry of the Environment, CopenhagenGoogle Scholar
  27. 27.
    Nakagawa Y, Izumi K, Oikawa N, Sotomatsu T, Shigemura M, Fujita T (1992) Environ Toxicol Chem 11:901–916CrossRefGoogle Scholar
  28. 28.
    Kishore CRP, Mohan GVK (2016) Anal Chem Res.  https://doi.org/10.1016/j.ancr.2016.11.002 Google Scholar
  29. 29.
    Perrin DD (1972) Dissociation constants of organic bases in aqueous solution. First Supplement (Compiled for IUPAC), LondonGoogle Scholar
  30. 30.
    Kormány R, Molnár I, Rieger HJ (2013) J Pharm Biomed Anal 80:79–88CrossRefGoogle Scholar
  31. 31.
    Kormány R, Tamás K, Guillarme D, Fekete S (2017) J Pharm Biomed Anal 146:220–225CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Egis Pharmaceuticals PLCBudapestHungary

Personalised recommendations