Advertisement

Dupont’s Lark males start to sing earlier but reduce song rate on full moon dawns

  • Cristian Pérez-GranadosEmail author
  • Germán M. López-Iborra
Original Article

Abstract

Moon phase affects the ecology and behaviour of animals and may thus affect both circadian and circannual rhythms. Its influence on nocturnal and dawn bird behaviour is known, but fewer studies have examined its effect on passerines’ singing activity, some of which have yielded contradictory findings. With the aim of elucidating whether moon phase affects dawn singing in passerines, we recorded dawn singing activity of the Dupont’s Lark Chersophilus duponti in three mediterranean shrub-steppes, through repeated sampling over three lunar cycles per breeding season in 2 years. Our results corroborate the idea that moon phase affects signalling behaviour of passerines. We found that, on average, dawn singing started 15 min earlier when the moon was full, due to variations in the light intensity, which seems to act as a trigger for singing activity in the Dupont’s Lark. Nonetheless, the dawn chorus finished at the same time regardless of moon phase, maybe due to a low contribution of moonlight as sunrise approaches. As a consequence, performance time increased during full moon nights. However, the total production of songs did not differ between moon phases, and therefore, song rate was lower during full moons. Reduced song rate on full moon nights could be a response of singing males to reduce their predation risk, since singing on bright nights can increase the ability of predators to locate them, but it could be also related to the energetic cost of longer choruses. The consequences of moon phase for mate attraction, reproductive success and behaviour in this and other bird species remain unknown, and thus our research can serve as a starting point from which to develop new studies.

Keywords

Chersophilus duponti Dawn chorus Lunar cycle Moonlight Passerine Performance time 

Zusammenfassung

Bei Vollmond beginnen Männchen der Dupontlerche früher mit ihrem Gesang, verringern jedoch die Gesangsrate.

Die Mondphase beeinflusst die Ökologie und das Verhalten von Tieren und kann sowohl auf Tages- als auch auf Jahresrhythmen wirken. Ihr Einfluss auf das Verhalten von Vögeln bei Nacht und während der Dämmerung ist bekannt, doch eine geringere Zahl von Studien hat die Wirkung der Mondphase auf die Gesangsaktivität von Singvögeln untersucht und z. T. widersprüchliche Ergebnisse geliefert. Um herauszufinden, ob die Mondphase den Gesang von Singvögeln in der Morgendämmerung beeinflusst, haben wir die Gesangsaktivität der Dupontlerche Chersophilus duponti während der Dämmerung in drei mediterranen Strauchsteppengebieten aufgenommen, und zwar wiederholt in drei Mondzyklen pro Brutsaison über zwei Jahre hinweg. Unsere Ergebnisse stützen die Idee, dass die Mondphase das Signalverhalten von Singvögeln beeinflusst. Wir fanden heraus, dass der Morgenchor bei Vollmond durchschnittlich 15 Minuten früher begann, bedingt durch Schwankungen der Lichtintensität, was bei der Dupontlerche offenbar Gesangsaktivität auslöst. Nichtsdestotrotz endete der Morgenchor ungeachtet der Mondphase zur selben Zeit, möglicherweise da das Mondlicht mit nahendem Sonnenaufgang relativ schwächer wird. Infolgedessen nahm die Gesangszeit in Vollmondnächten zu. Insgesamt unterschied sich die Gesangserzeugung zwischen verschiedenen Mondphasen jedoch nicht, wodurch die Gesangsrate bei Vollmond niedriger war. Eine verringerte Gesangsrate in Vollmondnächten könnte eine Verhaltensantwort singender Männchen sein, die darauf abzielt, das Prädationsrisiko herabzusetzen, da Fressfeinde singende Männchen in hellen Nächten besser orten könnten. Die mit längeren Strophen verbundenen Energiekosten stellen jedoch eine mögliche alternative Erklärung dar. Die Folgen der Mondphase für die Anziehung von Partnern, den Fortpflanzungserfolg und das Verhalten bei dieser und anderen Vogelarten bleiben ungeklärt, und somit kann unsere Forschung als Startpunkt für die Entwicklung neuer Studien dienen.

Notes

Acknowledgements

We wish to thank the Servicio de Vida Silvestre of Conselleria d´Infraestructures, Territori i Medi Ambient (Generalitat Valenciana) and Juan Jiménez for supporting our work. We thank Sarah Young for help with the written English. We are grateful to two anonymous reviewers, whose comments helped to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The datasets generated during and analysed during the current study are available in the Figshare repository,  https://doi.org/10.6084/m9.figshare.7820300.v1.

Supplementary material

10336_2019_1731_MOESM1_ESM.pdf (436 kb)
Supplementary material 1 (PDF 436 kb)
10336_2019_1731_MOESM2_ESM.pdf (452 kb)
Supplementary material 2 (PDF 452 kb)
10336_2019_1731_MOESM3_ESM.pdf (421 kb)
Supplementary material 3 (PDF 420 kb)

References

  1. Alonso JA, Alonso JC, Veiga JP (1985) The influence of moonlight on the timing of roosting flights in Common Cranes Grus grus. Ornis Scand 16:314–318CrossRefGoogle Scholar
  2. Amrhein V, Erne N (2006) Dawn singing reflects past territorial challenges in the winter wren. Anim Behav 71:1075–1080CrossRefGoogle Scholar
  3. Barnett CA, Briskie JV (2007) Energetic state and the performance of dawn chorus in silvereyes (Zosterops lateralis). Behav Ecol Sociobiol 61:579–587CrossRefGoogle Scholar
  4. Beaulieu M, Sockman KW (2012) Song in the cold is ‘hot’: memory of and preference for sexual signals perceived under thermal challenge. Biol Lett 8:751–753PubMedPubMedCentralCrossRefGoogle Scholar
  5. Best LB (1981) Seasonal changes in detection of individual bird species. In: Ralph CJ, Scott JM (eds) Estimating numbers of terrestrial birds, pp. 252–261. Studies in Avian biology, no. 6, Allen Press, LawrenceGoogle Scholar
  6. Bruni A, Mennill DJ, Foote JR (2014) Dawn chorus start time variation in a temperate bird community: relationships with seasonality, weather, and ambient light. J Ornithol 155:877–890CrossRefGoogle Scholar
  7. Bulyuk VN, Mukhin A, Kishkinev D, Kosarev V (2009) To what extent do environmental factors affect the long-distance nocturnal post-fledging movements of the Reed Warbler? J Ornithol 150:339–350CrossRefGoogle Scholar
  8. Catchpole CK, Slater PJ (2003) Bird song: biological themes and variations, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  9. Cramp S (1988) The birds of the western palearctic, vol 5. Oxford University Press, New YorkGoogle Scholar
  10. Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B (2014) Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behav Ecol 25:1037–1047CrossRefGoogle Scholar
  11. Dadwal N, Bhatt D (2017) Influence of astronomical (lunar)/meteorological factors on the onset of dawn song chorus in the Pied Bush Chat (Saxicola caprata). Curr Sci 113:329–334CrossRefGoogle Scholar
  12. Dominoni DM, Carmona-Wagner EO, Hofmann M, Kranstauber B, Partecke J (2014) Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. J Anim Ecol 83:681–692PubMedCrossRefPubMedCentralGoogle Scholar
  13. Eberhardt LS (1994) Oxygen consumption during singing by male Carolina Wrens (Thryothorus ludovicianus). Auk 111:124–130CrossRefGoogle Scholar
  14. Foote JR, Nanni LK, Schroeder R (2017) Seasonal patterns of nocturnal singing by ovenbirds and white-throated sparrows. Behaviour 154:1275–1295CrossRefGoogle Scholar
  15. Galbraith H (1989) Arrival and habitat use by Lapwings Vanellus vanellus in the early breeding season. Ibis 131:377–388CrossRefGoogle Scholar
  16. Grava T, Grava A, Otte KA (2009) Supplemental feeding and dawn singing in black-capped chickadees. The Condor 111:560–564CrossRefGoogle Scholar
  17. Henwood K, Fabrick A (1979) A quantitative analysis of the dawn chorus: temporal selection for communication optimization. Am Nat 114:260–274CrossRefGoogle Scholar
  18. Hernández-León S, Almeida C, Yebra L, Arístegui J, Hernádez de Puelles J, García-Braun J (2001) Zooplankton biomass in subtropical waters: is there a lunar cycle? Sci Mar 65:59–64CrossRefGoogle Scholar
  19. Hutchinson JM (2002) Two explanations of the dawn chorus compared: how monotonically changing light levels favour a short break from singing. Anim Behav 64:527–539CrossRefGoogle Scholar
  20. Kacelnik A (1979) The foraging efficiency of great tits (Parus major L.) in relation to light intensity. Anim Behav 27:237–241CrossRefGoogle Scholar
  21. Kacelnik A, Krebs JR (1983) The dawn chorus in the great tit (Parus major): proximate and ultimate causes. Behaviour 83:287–308CrossRefGoogle Scholar
  22. Kempenaers B, Borgström P, Loës P, Schliht E, Valcu M (2010) Artificial night lighting affects dawn song, extra-pair siring success, and lay date in songbirds. Curr Biol 20:1735–1739PubMedCrossRefPubMedCentralGoogle Scholar
  23. Kronfeld-Schor N, Dominoni D, de la Iglesia H, Levy O, Herzog ED, Dayan T, Helfrich-Forster C (2013) Chronobiology by moonlight. Proc R Soc Lond B Biol Sci 280:20123088CrossRefGoogle Scholar
  24. Kunc HP, Amrhein V, Naguib M (2005) Seasonal variation in dawn song characteristics in the common nightingale. Anim Behav 70:1265–1271CrossRefGoogle Scholar
  25. La VT (2012) Diurnal and nocturnal birds vocalize at night: a review. The Condor 114:245–257CrossRefGoogle Scholar
  26. Laiolo P, Vögeli M, Serrano D, Tella JL (2007) Testing acoustic versus physical marking: two complementary methods for individual-based monitoring of elusive species. J Avian Biol 38:672–681CrossRefGoogle Scholar
  27. Leopold A, Eynon AE (1961) Avian daybreak and evening song in relation to time and light intensity. The Condor 63:269–293CrossRefGoogle Scholar
  28. Liao CC, Shieh BS, Chen CC (2018) Air temperature influenced the vocal activity of birds in a subtropical forest in southern Taiwan. Taiwan J Forest Sci 33:291–304Google Scholar
  29. Mace R (1986) Importance of female behaviour in the dawn chorus. Anim Behav 34:621–622CrossRefGoogle Scholar
  30. Mace R (1987) The dawn chorus in the great tit Parus major is directly related to female fertility. Nature 330:745–746CrossRefGoogle Scholar
  31. Marini KL, Reudink MW, LaZerte SE, Otter KA (2017) Urban mountain chickadees (Poecile gambeli) begin vocalizing earlier, and have greater dawn chorus output than rural males. Behaviour 154:1197–1214CrossRefGoogle Scholar
  32. Martin G (1990) Birds by night. T&AD Poyser, LondonGoogle Scholar
  33. Miller MW (2006) Apparent effects of light pollution on singing behaviour of American robins. The Condor 108:130–139CrossRefGoogle Scholar
  34. Mills AM (1986) The influence of moonlight on the behaviour of Goatsuckers (Caprimulgidae). Auk 103:370–378CrossRefGoogle Scholar
  35. Milsom TP, Rochard JBA, Poole SJ (1990) Activity patterns of Lapwings Vanellus vanellus in relation to the lunar cycle. Ornis Scand 21:147–156CrossRefGoogle Scholar
  36. Møller AP (1991) Why mated songbirds sing so much: mate guarding and male announcement of mate fertility status. Am Nat 138:994–1014CrossRefGoogle Scholar
  37. Mori E, Menchetti M, Ferretti F (2014) Seasonal and environmental influences on the calling behaviour of Eurasian Scops Owls. Bird Study 61:277–281CrossRefGoogle Scholar
  38. Mougeot F, Bretagnolle V (2000) Predation risk and moonlight avoidance in nocturnal seabirds. J Avian Biol 31:376–386CrossRefGoogle Scholar
  39. Murphy MT, Sexton K, Dolan AC, Redmond LJ (2008) Dawn song of the eastern kingbird: an honest signal of male quality? Anim Behav 75:1075–1084CrossRefGoogle Scholar
  40. Oberweger K, Goller F (2001) The metabolic cost of birdsong production. J Exp Biol 204:3379–3388PubMedPubMedCentralGoogle Scholar
  41. Penteriani V, Delgado MdM, Campioni L, Lourenço R (2010) Moonlight Makes owls more chatty. PLoS One 5:e8696PubMedPubMedCentralCrossRefGoogle Scholar
  42. Penteriani V, Delgado MdM, Kuparinen A, Saurola P, Valkama J, Salo E, Toivola E, Aebischer A, Arlettaz R (2014) Bright moonlight triggers natal dispersal departures. Behav Ecol Sociobiol 68:743–747Google Scholar
  43. Pérez-Granados C, López-Iborra GM (2013) Census of breeding birds and population trends of the Dupont’s Lark (Chersophilus duponti) in Eastern Spain. Ardeola 60:143–150CrossRefGoogle Scholar
  44. Pérez-Granados C, López-Iborra GM (2015) Baja dispersión adulta y baja tasa de recaptura juvenil de la alondra ricotí (Chersophilus duponti) en el Rincón de Ademuz (Valencia). In: XX Congreso de Anilladores. 10 de octubre, Ceuta. Oral communicationGoogle Scholar
  45. Pérez-Granados C, Osiejuk T, López-Iborra GM (2016) Habitat fragmentation effects and variations in repertoire size and degree of song sharing among close Dupont’s Lark Chersophilus duponti populations. J Ornithol 157:471–482CrossRefGoogle Scholar
  46. Pérez-Granados C, López-Iborra GM, Garza V, Traba J (2017a) Breeding biology of the endangered Dupont’s Lark Chersophilus duponti in two separate Spanish shrub-steppes. Bird Study 64:328–338CrossRefGoogle Scholar
  47. Pérez-Granados C, López-Iborra GM, Seoane J (2017b) A multi-scale analysis of habitat selection in peripheral populations of the endangered Dupont’s Lark Chersophilus duponti. Bird Conserv Int 27:398–413CrossRefGoogle Scholar
  48. Pérez-Granados C, Osiejuk TS, López-Iborra GM (2018) Dawn chorus interpretation differs when using songs or calls: the Dupont’s Lark Chersophilus duponti case. PeerJ 6:e5241PubMedPubMedCentralCrossRefGoogle Scholar
  49. Poesel A, Kunc HP, Foerster K, Johnsen A, Kempenaers B (2006) Early birds are sexy: male age, dawn song and extrapair paternity in blue tits, Cyanistes (formerly Parus) caeruleus. Anim Behav 72:531–538CrossRefGoogle Scholar
  50. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  51. Schmidt KA, Belinsky KL (2013) Voices in the dark: predation risk by owls influences dusk singing in a diurnal passerine. Behav Ecol Sociobiol 67:1837–1843CrossRefGoogle Scholar
  52. Slagsvold T (1996) Dawn and dusk singing of male American robins in relation to female behaviour. Wilson Bull 108:507–515Google Scholar
  53. Sousa-Lima RS, Clark CW (2008) Modeling the effect of boat traffic on the fluctuation of Humpback whale singing activity in the Abrolhos National Marine Park, Brazil. Can Acoustics 36:174–181Google Scholar
  54. Tarlow EM, Hau M, Anderson DJ, Wikelski M (2003) Diel changes in plasma melatonin and corticosterone concentrations in tropical Nazca boobies (Sula granti) in relation to moon phase and age. Gen Comp Endocrinol 133:297–304PubMedCrossRefPubMedCentralGoogle Scholar
  55. Thomas RJ (1999) Two tests of a stochastic dynamic programming model of daily singing routines in birds. Anim Behav 57(2):277–284PubMedCrossRefPubMedCentralGoogle Scholar
  56. Welling P, Koivula K, Markku O (1997) Dawn chorus and female behaviour in the willow tit Parus montanus. Ibis 139:1–3CrossRefGoogle Scholar
  57. Wiederholt R, García JT, Garza V, Suárez F (2006) Sexual selection in Larks: the importance of white spots in the tail of Dupont’s Lark. J Ornithol 147(1):271Google Scholar
  58. Wilson DM, Bart J (1985) Reliability of singing bird surveys: effects of song phenology during the breeding season. The Condor 87:69–73CrossRefGoogle Scholar
  59. Wilson MD, Watts BD (2006) Effect of moonlight on detection of Whip-poor-wills: implications for long-term monitoring strategies. J Field Ornithol 77:207–211CrossRefGoogle Scholar
  60. York JE, Young AJ, Radford AN (2014) Singing in the moonlight: dawn song performance of a diurnal bird varies with lunar phase. Biol Let 10:20130970CrossRefGoogle Scholar
  61. Zhao T, Lin J, Zhang X, Wan D, Yin J (2016) The primary study on the relationship between environmental factors and dawn song in Varied Tits. In: ICBBE ‘16, November 12–14, 2016, Taipei, TaiwanGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Department of Ecology/IMEM “Ramón Margalef”Universidad de AlicanteAlicanteSpain
  2. 2.National Institute for Science and Technology in Wetlands (INAU), Federal University of Mato Grosso (UFMT), Computational Bioacoustics Research Unit (CO.BRA)CuiabáBrazil

Personalised recommendations