Advertisement

Movements of three alcid species breeding sympatrically in Saint Pierre and Miquelon, northwestern Atlantic Ocean

  • Karine DelordEmail author
  • Christophe Barbraud
  • David Pinaud
  • Bruno Letournel
  • Baptiste Jaugeon
  • Herlé Goraguer
  • Pascal Lazure
  • Hervé Lormée
Original Article

Abstract

Among seabirds, alcids are particularly sensitive to bycatch in fisheries and oil pollution, yet their distribution at sea remains scarcely known in most of their breeding areas. GPS telemetry data of fifteen individuals of alcids (5 Razorbills 6 Common Murres and 4 Puffins) were analyzed to determine their distribution during the breeding period of 2016 at Saint Pierre and Miquelon Archipelago (SPM). Two analytical methods (threshold and a switching state-space model) were used to identify behavioral modes and foraging areas. We compared foraging movements and estimated the overlap between the species. Distribution and foraging covered an area located between SPM and Newfoundland. Our results revealed that the three species headed northward of their breeding colony, targeting coastal waters. Nonetheless, the three species differed in their habitat distribution as well as in their space-use sharing. There was limited overlap between the foraging zones of the three species and a gillnet fishery targeting Atlantic salmon. Identifying alcids habitat use is imperative to the successful management and survival of these marine species especially since the distribution areas coincide with fishing pressure.

Keywords

Telemetry Behavioral models Animal movement Distribution overlap Fratercula arctica Alca torda Uria aalge 

Zusammenfassung

Bewegungsmuster dreier auf Saint-Pierre und Miquelon im nordwestlichen Atlantik sympatrisch brütender Alkenvogelarten

Unter den Seevögeln reagieren Alkenvögel besonders empfindlich auf Beifang durch die Fischerei und auf Ölverschmutzung. Doch die Verbreitung dieser Vögel auf See ist in den meisten ihrer Brutgebiete immer noch kaum bekannt. GPS-Telemetriedaten von 15 Individuen aus der Familie der Alkenvögel (5 Tordalke, 6 Trottellummen, 4 Papageientaucher) wurden analysiert, um ihre Verbreitung während der Brutzeit 2016 um die Inselgruppe Saint-Pierre und Miquelon (SPM) zu bestimmen. Zwei Analysemethoden (eng. threshold & switching state-space model) wurden zur Identifizierung von Verhaltensweisen und Nahrungssuchgebieten genutzt. Wir verglichen Bewegungsmuster während der Nahrungssuche und schätzten ihre Überschneidungen zwischen den Arten ein. Verbreitung und Nahrungssuchgebiete umfassten den Bereich zwischen SPM und Neufundland. Unsere Ergebnisse zeigten, dass alle drei Arten in Richtung der Küstengewässer nördlich ihrer Brutkolonien zogen. Dennoch unterschieden sich die drei Arten in ihrer Verteilung im Habitat und in der gemeinsamen Raumnutzung. Es gab nur geringe Überschneidungen zwischen den Nahrungssuchgebieten der drei Arten und einer Stellnetzfischerei, die auf Atlantischen Lachs abzielt. Die Identifizierung der Habitatnutzung von Alkenvögeln ist für das erfolgreiche Management und das Überleben dieser marinen Arten, vor allem seitdem die Verbreitungsgebiete mit dem Befischungsdruck zusammentreffen, zwingend erforderlich.

Notes

Acknowledgements

The authors are grateful to Richard Martin (Office National de la Chasse et de la Faune Sauvage-ONCFS), Jean Bouilleau (ONCFS) for their help in field operations and Lina Gouichiche for a preliminary data exploration. We thank K. Heerah and S. Bertrand for helpful advice on the HMM analyses. We thank two anonymous referees for constructive comments on earlier drafts.

Author contributions

Study design: HL, CB, KD fieldwork: HL, CB, KD, BL, data analysis and processing: KD, KD wrote the text and all authors edited and revised the manuscript, gave final approval for publication and agreed to be held accountable for the content therein.

Funding

The study was funded by Direction des Territoires, de l’Alimentation et de la Mer de Saint Pierre et Miquelon (FR) and the European Program BEST 2.0.

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. All capture and handling procedures were in accordance with the permits provided by the competent Authority (French Ministry of Environment, Energy and Sea).

Supplementary material

10336_2019_1725_MOESM1_ESM.docx (503 kb)
Supplementary material 1 (DOCX 502 kb)

References

  1. Benjamins S, Kulka DW, Lawson J (2008) Incidental catch of seabirds in Newfoundland and Labrador gillnet fisheries, 2001–2003. Endanger Species Res 5:149–160CrossRefGoogle Scholar
  2. Breed GA, Bowen W, McMillan J, Leonard ML (2006) Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal. Proc R Soc Lond B Biol Sci 273:2319–2326CrossRefGoogle Scholar
  3. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. The University of Chicago Press, New YorkGoogle Scholar
  4. Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519CrossRefGoogle Scholar
  5. Chapman DC, Beardsley RC (1989) On the origin of shelf water in the middle atlantic bight. J Phys Oceanogr 19:384–391CrossRefGoogle Scholar
  6. Chimienti M, Cornulier T, Owen E et al (2017) Taking movement data to new depths: inferring prey availability and patch profitability from seabird foraging behavior. Ecol Evol 7:10252–10265.  https://doi.org/10.1002/ece3.3551 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Croxall JP, Butchart SHM, Lascelles B et al (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34CrossRefGoogle Scholar
  8. Cyr F, Larouche P (2015) Thermal fronts atlas of canadian coastal waters. Atmos Ocean 53:212–236.  https://doi.org/10.1080/07055900.2014.986710 CrossRefGoogle Scholar
  9. Davoren GK (2007) Effects of gill-net fishing on marine birds in a biological hotspot in the Northwest Atlantic. Conserv Biol 21:1032–1045CrossRefGoogle Scholar
  10. Davoren GK, Montevecchi WA (2003) Consequences of foraging trip duration on provisioning behaviour and fledging condition of common murres Uria aalge. J Avian Biol 34:44–53CrossRefGoogle Scholar
  11. Elliott KH, Shoji A, Campbell KL, Gaston AJ (2010) Oxygen stores and foraging behavior of two sympatric, planktivorous alcids. Aquat Biol 8:221–235.  https://doi.org/10.3354/ab00236 CrossRefGoogle Scholar
  12. Ellis JI, Wilhelm SI, Hedd A et al (2013) Mortality of migratory birds from marine commercial fisheries and offshore oil and gas production in Canada. Avian Conserv Ecol 8:2.  https://doi.org/10.5751/ACE-00589-080204 CrossRefGoogle Scholar
  13. Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manag 69:1346–1359CrossRefGoogle Scholar
  14. Gaston AJ (2004) Seabirds: a natural history. Yale University Press, New Haven, CTGoogle Scholar
  15. Han G (2008) Seasonal variability of the labrador current and shelf circulation off Newfoundland. J Geophys Res Oceans 113:C10Google Scholar
  16. Hedd A, Regular PM, Wilhelm SI et al (2016) Characterization of seabird bycatch in eastern Canadian waters, 1998–2011, assessed from onboard fisheries observer data. Aquat Conserv Mar Freshw Ecosyst 26:530–548.  https://doi.org/10.1002/aqc.2551 CrossRefGoogle Scholar
  17. Jonsen ID, Flenming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880CrossRefGoogle Scholar
  18. Langrock R, King R, Matthiopoulos J et al (2012) Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology 93:2336–2342.  https://doi.org/10.1890/11-2241.1 CrossRefPubMedGoogle Scholar
  19. Lazure P, Le Cann B, Bezaud M (2018) Large diurnal bottom temperature oscillations around the Saint Pierre and Miquelon archipelago. Sci Rep 8:13882.  https://doi.org/10.1038/s41598-018-31857-w CrossRefPubMedPubMedCentralGoogle Scholar
  20. Le Fouest V, Zakardjian B, Saucier FJ, Starr M (2005) Seasonal versus synoptic variability in planktonic production in a high-latitude marginal sea: the Gulf of St. Lawrence (Canada). J Geophys Res Oceans 110:C09012.  https://doi.org/10.1029/2004jc002423 CrossRefGoogle Scholar
  21. Legendre L, Demers S (1984) Towards dynamic biological oceanography and limnology. Can J Fish Aquat Sci 41:2–19.  https://doi.org/10.1139/f84-001 CrossRefGoogle Scholar
  22. Legendre L, Demers S, Therriault J, Boudreau C (1985) Tidal variations in the photosynthesis of estuarine phytoplankton isolated in a tank. Mar Biol 88:301–309.  https://doi.org/10.1007/BF00392591 CrossRefGoogle Scholar
  23. Lesage V, Hammill MO, Kovacs KM (2001) Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Mar Ecol Prog Ser 210:203–221.  https://doi.org/10.3354/meps210203 CrossRefGoogle Scholar
  24. Lewison RL, Crowder LB, Wallace BP, Moore JE, Cox T, Zydelis R, McDonald S, DiMatteo A, Dunn DC, Kot CY, Bjorkland R, Kelez S, Soykan C, Stewart KR, Sims M, Boustany A, Read AJ, Halpin P, Nichols WJ, Safina C (2014) Global patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa-specific and cumulative megafauna hotspots. Proc Nat Acad Sci 111(14):5271–5276CrossRefGoogle Scholar
  25. Linnebjerg JF, Fort J, Guilford T et al (2013) Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS One 8(8):e72987CrossRefGoogle Scholar
  26. Lormée H, Delord K, Letournel B (2008) Dénombrement des oiseaux marins nicheurs sur l’Ile du Grand Colombier (Saint Pierre and Miquelon). Unpublished ONCFS Report, pp 23Google Scholar
  27. Lormée H, Delord K, Letournel B, Barbraud C (2012) Population survey of Leach’s storm-petrels breeding atGrand Colombier Island, Saint-Pierre and Miquelon archipelago. Wilson J Ornithol 124:245–252CrossRefGoogle Scholar
  28. Lormée H, Barbraud C, Letournel B (2015) Etude des populations d’oiseaux marins nicheurs sur l’Ile du Grand Colombier (Saint Pierre and Miquelon). Direction de l’Agriculture et de la Forêt, Saint Pierre, Saint Pierre et Miquelon. Unpublished ONCFS Report, pp 24Google Scholar
  29. Michelot T, Langrock R, Patterson TA (2016) moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol Evol 7:1308–1315.  https://doi.org/10.1111/2041-210X.12578 CrossRefGoogle Scholar
  30. Oppel S, Bolton M, Carneiro APB et al (2018) Spatial scales of marine conservation management for breeding seabirds. Mar Policy 98:37–46.  https://doi.org/10.1016/j.marpol.2018.08.024 CrossRefGoogle Scholar
  31. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell R, Stair GR (eds) Columbus. Ohio State University Press, Ohio, pp 155–177Google Scholar
  32. Patterson TA, Basson M, Bravington MV, Gunn JS (2009) Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J Anim Ecol 78:1113–1123.  https://doi.org/10.1111/j.1365-2656.2009.01583.x CrossRefPubMedGoogle Scholar
  33. Petrie B, Anderson C (1983) Circulation on the Newfoundland continental shelf. Atmos Ocean 21:207–226CrossRefGoogle Scholar
  34. Phillips RA, Wakefield ED, Croxall JP et al (2009) Albatross foraging behaviour: no evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar Ecol Prog Ser 391:279–292CrossRefGoogle Scholar
  35. Piatt J, Nettleship D (1987) Iincidental catch of marine birds and mammals in fishing netts off Newfoundland, Canada. Mar Pollut Bull 18:344–349.  https://doi.org/10.1016/S0025-326X(87)80023-1 CrossRefGoogle Scholar
  36. Pinheiro J, Bates D, DebRoy S et al (2013) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-117Google Scholar
  37. Pratte I, Robertson GJ, Mallory ML (2017) Four sympatrically nesting auks show clear resource segregation in their foraging environment. Mar Ecol Prog Ser 572:243–254.  https://doi.org/10.3354/meps12144 CrossRefGoogle Scholar
  38. R Core Team (2018) R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 1 Mar 2018
  39. Regular PM, Robertson GJ, Montevecchi WA et al (2010) Relative importance of human activities and climate driving common murre population trends in the Northwest Atlantic. Polar Biol 33:1215–1226CrossRefGoogle Scholar
  40. Rodway MS, Montevecchi WA (1996) Sampling methods for assessing the diets of Atlantic puffin chicks. Mar Ecol Prog Ser 144:41–55.  https://doi.org/10.3354/meps144041 CrossRefGoogle Scholar
  41. Rutherfort K, Fennel K (2018) Diagnosing transit times on the northwestern North Atlantic continental shelf. Ocean Sci 14:1207–1221CrossRefGoogle Scholar
  42. Shoji A, Elliott K, Fayet A et al (2015) Foraging behaviour of sympatric razorbills and puffins. Mar Ecol Prog Ser 520:257–267.  https://doi.org/10.3354/meps11080 CrossRefGoogle Scholar
  43. Shoji A, Aris-Brosou S, Elliott KH (2016) Physiological constraints and dive behavior scale in tandem with body mass in auks: a comparative analysis. Comp Biochem Physiol Mol Integr Physiol 196:54–60.  https://doi.org/10.1016/j.cbpa.2016.02.023 CrossRefGoogle Scholar
  44. Thaxter CB, Wanless S, Daunt F et al (2010) Influence of wing loading on the trade-off between pursuit-diving and flight in common guillemots and razorbills. J Exp Biol 213:1018–1025.  https://doi.org/10.1242/jeb.037390 CrossRefPubMedGoogle Scholar
  45. Wakefield ED, Phillips RA, Matthiopoulos J (2009) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser 391:165–182CrossRefGoogle Scholar
  46. Wanless S, Harris MP, Morris JA (1990) A comparison of feeding areas used by individual common murres (Uria aalge), razorbills (Alca torda) and an Atlantic puffin (Fratercula arctica) during the breeding season. Colon Waterbirds 13(1):16–24CrossRefGoogle Scholar
  47. White M, Hay AE (1994) Dense overflow into a large silled embayment: tidal modulation, front and basin modes. J Mar Sci 52:459–487Google Scholar
  48. Zucchini W, Raubenheimer D, MacDonald IL (2008) Modeling time series of animal behavior by means of a latent-state model with feedback. Biometrics 64:807–815.  https://doi.org/10.1111/j.1541-0420.2007.00939.x CrossRefPubMedGoogle Scholar
  49. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.  https://doi.org/10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar
  50. Žydelis R, Bellebaum J, Ísterblom H et al (2009) Bycatch in gillnet fisheries—an overlooked threat to waterbird populations. Biol Conserv 142:1269–1281CrossRefGoogle Scholar
  51. Žydelis R, Small C, French G (2013) The incidental catch of seabirds in gillnet fisheries: a global review. Biol Conserv 162:76–88CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Centre d’Études Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle UniversitéVilliers-en-BoisFrance
  2. 2.ONCFS, Service départemental de Saint Pierre and MiquelonSaint Pierre et MiquelonFrance
  3. 3.Direction des Territoires de l’Alimentation et de la Mer-SAMPSaint Pierre et MiquelonFrance
  4. 4.IFREMER Saint Pierre and MiquelonSaint Pierre et MiquelonFrance
  5. 5.IFREMER, Univ. Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEMBrestFrance
  6. 6.ONCFS, Station ONCFS de ChizéVilliers-en-BoisFrance

Personalised recommendations