Advertisement

Journal of Ornithology

, Volume 161, Issue 1, pp 103–113 | Cite as

Apparent survival, growth rate and dispersal in a declining European Roller population

  • Juan Rodríguez-RuizEmail author
  • Mónica Expósito-Granados
  • Jesús M. Avilés
  • Deseada Parejo
Original Article

Abstract

Studying demographic parameters and how they may influence population growth is critical to the development of meaningful conservation actions for endangered species. The European Roller Coracias garrulus has experienced a drastic decline through its breeding distribution range, but very little is known about its demography (i.e. dispersal and survival). Here, we investigated the apparent survival, population growth and breeding site fidelity in a Roller population in the south of Spain over a period of 8 years. We used capture–recapture histories of 202 ringed adults and 369 fledglings to estimate annual survival, and studied factors affecting site fidelity in 56 adults found breeding over two consecutive years. Adult male and female apparent survival overlapped widely and was similar to that found in other similar migratory species. However, juvenile apparent survival, which was markedly lower than adult survival, was low relative to that found for other birds. Population growth was nearly stable during the study period. Regarding site fidelity, males raising more fledglings one year were more prone to be faithful the following year. In females, however, we did not find any factor influencing either site fidelity decisions or distance between consecutive breeding sites. Concerning settlement decisions, males, but not females, moved to nest-boxes where density of Rollers was lower than that at the nest-box of origin. Altogether, our results suggest that the low productivity and a potential decrease in immigration might be compromising the viability of the population.

Keywords

Apparent survival Coracias garrulus Dispersal European Roller Population growth 

Zusammenfassung

Lokale Überlebenswahrscheinlichkeit, Wachstumsrate und Dismigration bei einer abnehmenden Blaurackenpopulation

Das Studium demografischer Parameter und ihres möglichen Einflusses auf das Populationswachstum ist von entscheidender Bedeutung für die Entwicklung sinnvoller Schutzmaßnahmen für bedrohte Arten. Die Blauracke Coracias garrulus hat in ihrem Brutverbreitungsgebiet einen dramatischen Rückgang erlebt, es ist aber nur sehr wenig über ihre Demografie (d. h. Dismigration und Überlebensraten) bekannt. Wir untersuchten hier die lokale Überlebenswahrscheinlichkeit, das Populationswachstum sowie die Brutorttreue an einer Blaurackenpopulation im Süden Spaniens über einen Zeitraum von acht Jahren. Auf der Grundlage von Fang-Wiederfang-Datenreihen von 202 beringten Altvögeln und 369 flüggen Jungvögeln schätzten wir die jährlichen Überlebensraten und erforschten die Ursachen für Brutorttreue bei 56 Altvögeln, welche in zwei aufeinanderfolgenden Jahren brüteten. Bei adulten Männchen und Weibchen überlappten die Werte für die lokale Überlebenswahrscheinlichkeit weitreichend und glichen denen, die für ähnliche Zugvogelarten ermittelt wurden. Allerdings lag die lokale Überlebenswahrscheinlichkeit der Jungvögel eindeutig unter derjenigen der Altvögel und war im Vergleich zu anderen Vogelarten niedrig. Zur Zeit der Untersuchung war das Populationswachstum nahezu stabil. In Bezug auf die Brutorttreue neigten Männchen, welche im einen Jahr mehr flügge Jungvögel aufgezogen hatten, im Folgejahr zu größerer Treue. Für die Weibchen fanden wir allerdings keinen Faktor, der Brutorttreue oder die Distanz zwischen zwei aufeinanderfolgenden Nistplätzen beeinflusst hätte. Insgesamt lassen unsere Ergebnisse vermuten, dass die geringe Produktivität und ein möglicher Rückgang bei der Zuwanderung die Überlebensfähigkeit der Population gefährden könnten.

Notes

Acknowledgements

DP and JMA were funded by the Spanish Ministry of Education and Science/FEDER through the projects CGL2008-00718, CGL2011-27561/BOS, CGL2014-56769-P, CGL2017-83503-P and by the Government of Extremadura through the project TA13002 to DP. Data was collected under license of the Junta de Andalucía, Spanish region in which the study was done. Therefore, data collection complies with the current laws of Spain, where the study was performed. JRR, DP, JMA conceived of and designed the research, analysed data and wrote the paper. JRR, DP, JMA and MEG collected data. All the authors contributed with comments to the final version of the manuscript. We thank two anonymous referees for constructive comments on previous drafts of the manuscript.

Supplementary material

10336_2019_1699_MOESM1_ESM.pdf (40 kb)
Supplementary material 1 (PDF 40 kb)
10336_2019_1699_MOESM2_ESM.xlsx (14 kb)
Supplementary material 2 (XLSX 13 kb)
10336_2019_1699_MOESM3_ESM.xlsx (20 kb)
Supplementary material 3 (XLSX 20 kb)

References

  1. Avilés JM, Parejo D, Rodríguez J (2011) Parental favouritism in the asynchronously hatching European Roller (Coracias garrulus). Behav Ecol Sociobiol 65(8):1549–1557Google Scholar
  2. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell Publishing, OxfordGoogle Scholar
  3. Beissinger SR, Westphal MI (1998) On the use of demographic models of population viability in endangered species management. J Wildl Manag 62(3):821–841Google Scholar
  4. Beletsky LD, Orians GH (1987) Territoriality among male red-winged blackbirds. Behav Ecol Sociobiol 20:21–34Google Scholar
  5. Beletsky LD, Orians GH (1991) Effects of breeding experience and familiarity on site fidelity in female red-winged blackbirds. Ecology 72(3):787–796Google Scholar
  6. Blancher PJ, Robertson RJ (1985) Site consistency in kingbird breeding performance: implications for site fidelity. J Anim Ecol 54:1017–1027Google Scholar
  7. Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzell N, Stevens VM, Vanderwoestijne S, Baguette M, Barton K, Benton TG, Chaput-bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2012) Costs of dispersal. Biol Rev 87:290–312PubMedGoogle Scholar
  8. Bonte D, De Roissart A, Wybouw N, Van Leeuwen T (2014) Fitness maximization by dispersal: evidence from an invasion experiment. Ecology 95(11):3104–3111Google Scholar
  9. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225PubMedGoogle Scholar
  10. Brown ME (1996) Assessing body condition in birds. In: Nolan V, Ketterson ED (eds) Current ornithology, vol 13. Springer, BostonGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science and Business Media, New YorkGoogle Scholar
  12. Calabuig G, Ortego J, Cordero PJ, Aparicio JM (2008) Causes, consequences and mechanisms of breeding dispersal in the colonial lesser kestrel, Falco naumanni. Anim Behav 76(6):1989–1996Google Scholar
  13. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244Google Scholar
  14. Cichoń M, Dubiec A (2005) Cell-mediated immunity predicts the probability of local recruitment in nestling blue tits. J Evol Biol 18:962–966PubMedGoogle Scholar
  15. Clobert J, Galliard L, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209PubMedGoogle Scholar
  16. Cramp S (1998) The complete birds of the western Palearctic. CD-ROM version. Oxford University Press, OxfordGoogle Scholar
  17. Danchin E, Boulinier R, Massot M (1998) Conspecific reproductive success and breeding habitat selection: implications for the study of coloniality. Ecology 79:2415–2428Google Scholar
  18. Doligez B, Danchin E, Clobert J (2002) Public information and breeding habitat selection in a wild bird population. Science 297:1168–1170PubMedGoogle Scholar
  19. Donovan TM, Thompson FR III, Faaborg J, Probst JR (1995) Reproductive success of migratory birds in habitat sources and sinks. Cons Biol 9:1380–1395Google Scholar
  20. Finch T, Saunders P, Avilés JM, Bermejo A, Catry I, de la Puente J, Emmenegger T, Mardega I, Mayet P, Parejo D, Račinskis E, Rodríguez-Ruiz J, Sackl P, Schwartz T, Tiefenbach M, Valera F, Hewson C, Franco A, Butler SJ (2015) A pan-European, multipopulation assessment of migratory connectivity in a near-threatened migrant bird. Divers Distrib 21:1051–1062Google Scholar
  21. Forero MG, Donázar JA, Blas J, Hiraldo F (1999) Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80:1298–1310Google Scholar
  22. Gienapp P, Merilä J (2011) Sex-specific fitness consequences of dispersal in Siberian jays. Behav Ecol Sociobiol 65:131–140Google Scholar
  23. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162Google Scholar
  24. Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Evol Syst 13:1–21Google Scholar
  25. Haas CA (1998) Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach. Auk 115(4):929–936Google Scholar
  26. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142(6):911–927PubMedGoogle Scholar
  27. Lebreton J, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62(1):67–118Google Scholar
  28. Muller KL, Stamps JA, Krishnan VV, Willits NH (1997) The effects of conspecific attraction and habitat quality on habitat selection in territorial birds (Troglodytes aedon). Am Nat 150(5):650–661PubMedGoogle Scholar
  29. Nebel C, Kadletz K, Gamauf A, Haring E, Sackl P, Tiefenbach M, Winkler H, Zachos FE (2018) Witnessing extinction: population genetics of the last European Rollers (Coracias garrulus) in Austria and a first phylogeographic analysis of the species across its distribution range. J Zool Syst Evol Res.  https://doi.org/10.1111/jzs.12256 CrossRefGoogle Scholar
  30. Newton I (1993) Age and site fidelity in female sparrowhawks, Accipiter nisus. Anim Behav 46:161–168Google Scholar
  31. Newton I (2001) Causes and consequences of breeding dispersal in the sparrowhawk Accipiter nisus. Ardea 89:143–154Google Scholar
  32. Newton I, Marquiss M (1982) Fidelity to breeding area and mate in sparrowhawks Accipiter nisus. J Anim Ecol 51(1):327–341Google Scholar
  33. Nichols JD, Hines JE (2002) Approaches for the direct estimation of λ and demographic contributions to λ using capture-recapture data. J Appl Stat 29:539–568Google Scholar
  34. Nilsson JA, Svensson E (1996) The cost of reproduction: a new link between current reproductive effort and future reproductive success. Proc R Soc Lon Biol 263:711–714Google Scholar
  35. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67(4):518–536Google Scholar
  36. Parejo D, Danchin E, Avilés JM (2005) The heterospecific habitat copying hypothesis: can competitors indicate habitat quality? Behav Ecol 16(1):96–105Google Scholar
  37. Parejo D, White J, Clobert J, Dreiss A, Danchin E (2007a) Blue tits use fledgling quantity and quality as public information in breeding site choice. Ecology 88(9):2373–2382PubMedGoogle Scholar
  38. Parejo D, Silva N, Avilés JM (2007b) Within-brood size differences affect innate and acquired immunity in rollers Coracias garrulus nestlings. J Anim Biol 38(6):717–725Google Scholar
  39. Parejo D, Cruz-Miralles A, Rodríguez-Ruiz J, Expósito-Granados M, Avilés JM (2018) Determinants of color polymorphism in the Eurasian scops owl Otus scops. J Av Biol.  https://doi.org/10.1111/jav.01777 CrossRefGoogle Scholar
  40. Pärt T, Gustafsson L (1989) Breeding dispersal in the collared flycatcher (Ficedula albicollis): possible causes and reproductive consequences. J Anim Ecol 58:305–320Google Scholar
  41. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 22 Feb 2017
  42. Ricklefs RE (1973) Fecundity, mortality, and avian demography. In: Farnon DS (ed) Breeding biology of birds. National Academy of Sciences, Washington D.C, pp 366–434Google Scholar
  43. Rivers JW, Liebl AL, Owen JC, Martin LB, Betts MG (2012) Baseline corticosterone is positively related to juvenile survival in a migrant passerine bird. Funct Ecol 26:1127–1134Google Scholar
  44. Rodríguez J, Avilés JM, Parejo D (2011) The value of nest-boxes in the conservation of Eurasian Rollers Coracias garrulus in southern Spain. Ibis 153:735–745Google Scholar
  45. Rodríguez-Ruiz J, de la Puente J, Parejo D, Valera F, Calero-Torralbo MA, Reyes-González JM, Zajková Z, Bermejo A, Avilés JM (2014) Disentangling migratory routes and wintering grounds of Iberian near-threatened European Rollers Coracias garrulus. PLoS One 9:e115615PubMedPubMedCentralGoogle Scholar
  46. Roodbergen M, van der Beef B, Hötker H (2012) Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. J Ornithol 153:53–74Google Scholar
  47. Sæther BE (1989) Survival rates in relation to body weight in European birds. Ornis Scand 20:13–21Google Scholar
  48. Sæther BE, Bakke O (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653Google Scholar
  49. Sánchez-Tójar A, Parejo D, Martínez JG, Rodríguez-Ruiz J, Avilés JM (2015) Parentage analyses reveal hidden breeding strategies of European Rollers Coracias garrulus. Acta Ornithol 50(2):252–258Google Scholar
  50. Schaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17(10):474–480Google Scholar
  51. Schaub M, Reichlin TS, Abadi F, Kéry M, Jenni L, Arletazz R (2012) The demographic drivers of local population dynamics in two rare migratory birds. Oecol 168:97–108Google Scholar
  52. Serrano D, Tella JL (2003) Dispersal within a spatially structured population of lesser kestrels: the role of spatial isolation and conspecific attraction. J Anim Ecol 72:400–410Google Scholar
  53. Serrano D, Tella JL, Forero MG, Donázar JA (2001) Factors affecting breeding dispersal in the facultatively colonial lesser kestrel: individual experience vs. conspecific cues. J Anim Ecol 70:568–578Google Scholar
  54. Sosnowski J, Chmielewski S (1996) Breeding biology of the roller Coracias garrulus in Puszcza Pilicka forest (Central Poland). Acta Ornithol 31(2):119–131Google Scholar
  55. Stamps JA, Krishnan VV, Reid ML (2005) Search costs and habitat selection by dispersers. Ecology 86(2):510–518Google Scholar
  56. Switzer PV (1997) Past reproductive success affects future habitat selection. Behav Ecol Sociobiol 40(5):307–312Google Scholar
  57. Tarof SA, Kramer PM, Hill JR III, Tautin J, Stutchbury BJM (2011) Brood size and late breeding are negatively related to juvenile survival in a neotropical migratory songbird. Auk 128(4):716–725Google Scholar
  58. Thomas CD, Kunin WE (1999) The spatial structure of populations. J Anim Ecol 68:647–657Google Scholar
  59. Trine CL (1998) Wood thrush population sinks and implications for the scale of regional conservation strategies. Conserv Biol 12:576–585Google Scholar
  60. Václav R, Valera F, Martínez T (2010) Social information in nest colonization and occupancy in a long-lived, solitary breeding bird. Oecol 165(3):617–627Google Scholar
  61. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139Google Scholar
  62. Wiklund CG (1996) Determinants of dispersal in breeding merlins (Falco columbarius). Ecology 77(6):1920–1927Google Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Departamento de Ecología Funcional y EvolutivaEstación Experimental de Zonas Áridas (EEZA-CSIC)AlmeríaSpain
  2. 2.Área de Zoología, Departamento de Anatomía, Biología Celular y Zoología, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain

Personalised recommendations