Journal of Ornithology

, Volume 160, Issue 4, pp 1221–1233 | Cite as

Coevolutionary arms race between a specialist brood parasite, the Screaming Cowbird, and its host, the Grayish Baywing

  • María C. De Mársico
  • Cynthia A. Ursino
  • Romina C. Scardamaglia
  • Juan C. ReboredaEmail author
Part of the following topical collections:
  1. 27th International Ornithological Congress, Vancouver, Canada, 19 to 26 August 2018


Interspecific brood parasites exploit the parental care of host species. This exploitation entails fitness costs for the hosts, which favor the evolution of antiparasitic defenses. Host defenses select for counter-defenses in the parasite, which in turn select for improved host defenses; this results in a coevolutionary arms race that may operate at each stage of the nesting cycle of the host. Most studied examples of the coevolutionary arms race in brood parasites are restricted to the egg stage, with relatively few studies showing coevolution between hosts and parasites at the nestling or fledgling stages; studies on the whole set of host defenses and potential parasite counter-defenses at each stage of the breeding cycle are still lacking. Systems in which parasites are host specialists are particularly well suited to an examination of the pairwise coevolutionary interactions before, during and after host egg-laying, and how these interactions have shaped host resistance or tolerance of parasitism. The Screaming Cowbird (Molothrus rufoaxillaris) is one of the most specialized brood parasites, and mainly parasitizes nests of a single host species, the Grayish Baywing (Agelaioides badius). Parasitism rates of Grayish Baywing nests are extremely high, with most nests parasitized several times. Several traits of this host-parasite system suggest ancient coevolutionary relationships encompassing the entire nesting cycle. In this paper we summarize the main results of a long-term study on the costs of Screaming Cowbird parasitism on the Grayish Baywing’s reproductive success and how these costs have favored reciprocal adaptations and counter-adaptations at each stage of the nesting cycle.


Brood parasitism Coevolution Defense Counter-defense Host specialist Parental care 


Koevolutionäre Rüstungsspirale zwischen einem Brutparasit, dem Rotachsel-Kuhstärling, und seinem Host, dem Graukuhstärling

Interspezifische Brutparasiten nutzen die Brutpflege ihrer Hosts aus. Diese Ausnutzung erzeugt Kosten bei den Hosts, die die Evolution von Verteidigungsmechanismen hervorbringt. Diese Verteidigungsmechanismen erzeugen wiederum Kontermechanismen im Parasit, die erneut verfeinerte Verteidigungsmechanismen im Host enwickeln. Dies erzeugt eine Rüstungsspirale die während der ganzen Brutphase des Hosts stattfinden kann. Die meisten Beispiele einer Rüstungsspirale in Brutparasiten findet man während der Eierphase, mit wenigen Studien die diese Koevolution in der Küken- und Jungphase zeigen. Studien, die Verteidigungs- und Kontermechanismen während der ganzen Brutphase bewerten, fehlen noch. Systeme in denen der Brutparasit einen einzigen Host benutzt sind besonders günstig um dieses koevolutionäre Zusammenspiel vor, während und nach der Eierlegephase zu studieren und die Resistenz oder Toleranz des Hosts dem Brutparasiten gegenüber zu evaluieren. Der Rotachsel-Kuhstarling (Molothrus rufoaxillaris) ist einer der spezialisiertesten Brutparasiten, der hauptsächlich die Nester einer einzigen Art parasitiert, die des Graukuhstärlings (Agelaioides badius). Der Anteil der parasitierten Nester im Graukuhstärling is extrem hoch, und den Grossteil der Nester findet man mehrmals parasitiert. Mehrere Eigenschaften dieses Host-Brutparasitsystems weisen auf eine historische Koevolution, die die gesamte Brutphase umfasst. In diesem Beitrag fassen wir die bedeutendsten Ergebnisse einer langfristigen Studie zusammen, und zeigen die Kosten die ein Brutparasit, der Rotachsel-Kuhstärling, in einem Host, dem Graukuhstärling, hervorbringt und wie diese Kosten die gegenseitigen Adaptationen und Konteradaptationen während der gesamten Brutphase hervorrufen.



We thank Fundación Elsa Shaw de Pearson for allowing us to work at the study site in Reserva El Destino. We are grateful to F. Lama, J. M. Rojas Ripari, R. Masok and R. Gloag, who contributed to various aspects of the data collection. We also thank three anonymous reviewers for helpful comments on a previous version of this manuscript and Bettina Mahler for the German translation of the abstract. This work was supported by funds granted to J. C. Reboreda and M. C. De Mársico by the Agencia Nacional de Promoción Científica y Tecnológica and the Secretaria de Ciencia y Tecnica, University of Buenos Aires.


  1. Astié AA, Reboreda JC (2006) Costs of egg punctures and parasitism by Shiny Cowbirds (Molothrus bonariensis) at Creamy-bellied Thrush (Turdus amaurochalinus) nests. Auk 123:23–32. CrossRefGoogle Scholar
  2. Briskie JV, Sealy SG, Hobson KA (1992) Behavioral defenses against avian brood parasitism in sympatric and allopatric host populations. Evolution 46:334–340. CrossRefPubMedGoogle Scholar
  3. Burhans DE, Thompson FR, Faaborg J (2000) Costs of parasitism incurred by two songbird species and their quality as cowbird hosts. Condor 102:364–373. CrossRefGoogle Scholar
  4. Clotfelter ED, Yasukawa K (1999) The function of early onset of nocturnal incubation in Red-winged Blackbirds. Auk 116:417–426. CrossRefGoogle Scholar
  5. Cossa NA, Tuero DT, Reboreda JC, Fiorini VD (2017) Egg pecking and puncturing behaviors in Shiny and Screaming Cowbirds: effects of eggshell strength and degree of clutch completion. Behav Ecol Sociobiol 71:60. CrossRefGoogle Scholar
  6. Davies NB (2000) Cuckoos, cowbirds and other cheats. Poyser, LondonGoogle Scholar
  7. Davies NB (2011) Cuckoo adaptations: trickery and tuning. J Zool 284:1–14. CrossRefGoogle Scholar
  8. Davies NB, de Brooke ML (1988) Cuckoos versus Reed Warblers: adaptations and counteradaptations. Anim Behav 36:262–284. CrossRefGoogle Scholar
  9. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc B 205:489–511. CrossRefGoogle Scholar
  10. de Brooke ML, Davies NB (1988) Egg mimicry by Cuckoos Cuculus canorus in relation to discrimination by hosts. Nature 335:630–632. CrossRefGoogle Scholar
  11. De Mársico MC, Reboreda JC (2008a) Egg-laying behavior in Screaming Cowbirds: why does a specialist brood parasite waste so many eggs? Condor 110:143–153. CrossRefGoogle Scholar
  12. De Mársico MC, Reboreda JC (2008b) Differential reproductive success favours strong host preference in a highly specialized brood parasite. Proc R Soc B 275:2499–2506. CrossRefPubMedGoogle Scholar
  13. De Mársico MC, Reboreda JC (2010) Brood parasitism increases mortality of Bay-Winged Cowbird nests. Condor 112:407–417. CrossRefGoogle Scholar
  14. De Mársico MC, Reboreda JC (2014) High frequency but low impact of brood parasitism by the specialist Screaming Cowbird on its primary host, the Baywing. Emu 114:309–316. CrossRefGoogle Scholar
  15. De Mársico MC, Mahler B, Reboreda JC (2010) Reproductive success and nestling growth of the Baywing parasitized by Screaming and Shiny Cowbirds. Wilson J Ornithol 122:417–431. CrossRefGoogle Scholar
  16. De Mársico MC, Gantchoff MG, Reboreda JC (2012) Host-parasite coevolution beyond the nestling stage? Mimicry of host fledglings by the specialist Screaming Cowbird. Proc R Soc B 279:3401–3408. CrossRefPubMedGoogle Scholar
  17. De Mársico MC, Gloag R, Ursino CA, Reboreda JC (2013) A novel method of rejection of brood parasitic eggs reduces parasitism intensity in a cowbird host. Biol Lett 9:20130076. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dearborn DC (1999) Brown-headed Cowbird nestling vocalizations and risk of nest predation. Auk 116:448–457. CrossRefGoogle Scholar
  19. Dearborn DC, Anders AD, Thompson FR, Faaborg J (1998) Effects of cowbird parasitism on parental provisioning and nestling food acquisition and growth. Condor 100:326–334. CrossRefGoogle Scholar
  20. Delhey K, Carrizo M, Verniere L, Mahler B, Peters A (2011) Rejection of brood-parasitic Shiny Cowbird Molothrus bonariensis nestlings by the Firewood-Gatherer Anumbius annumbi? J Avian Biol 42:463–467. CrossRefGoogle Scholar
  21. Di Giacomo AG, Reboreda JC (2014) Reproductive success of the specialist brood parasite Screaming Cowbird in an alternative host, the Chopi Blackbird. Auk 132:16–24. CrossRefGoogle Scholar
  22. Ellison K, Sealy SG (2007) Small hosts infrequently disrupt laying by Brown-headed Cowbirds and Bronzed Cowbirds. J Field Ornithol 78:379–389. CrossRefGoogle Scholar
  23. Feeney WE, Riehl C (2019) Monogamy without parental care? Social and genetic mating systems of avian brood parasites. Philos Trans R Soc B 374:20180201. CrossRefGoogle Scholar
  24. Feeney WE, Welbergen JA, Langmore NE (2012) The frontline of avian brood parasite–host coevolution. Anim Behav 84:3–12. CrossRefGoogle Scholar
  25. Fraga RM (1979) Differences between nestlings and fledglings of Screaming and Bay-winged Cowbirds. Wilson Bull 91:151–154Google Scholar
  26. Fraga RM (1983) The eggs of the parasitic Screaming Cowbird (Molothrus rufoaxillaris) and its host, the Baywinged Cowbird (M. badius): is there evidence for mimicry? J Ornithol 124:187–193. CrossRefGoogle Scholar
  27. Fraga RM (1998) Interactions of the parasitic Screaming and Shiny Cowbirds (Molothrus rufoaxillaris and M. bonariensis) with a shared host, the Bay-winged Cowbird (M. badius). In: Rothstein SI, Robinson SK (eds) Parasitic birds and their hosts: studies in coevolution. Oxford University Press, New York, pp 173–193Google Scholar
  28. Gill SA, Neudorf DL, Sealy SG (2008) Do hosts discriminate between sexually dichromatic male and female Brown-headed Cowbirds? Ethology 114:548–556. CrossRefGoogle Scholar
  29. Gloag R, Fiorini VD, Reboreda JC, Kacelnik A (2013) The wages of violence: mobbing by mockingbirds as a frontline defence against brood-parasitic cowbirds. Anim Behav 86:1023–1029. CrossRefGoogle Scholar
  30. Goguen CB, Mathews NE (1996) Nest desertion by Blue-gray Gnatcatchers in association with Brown-headed Cowbird parasitism. Anim Behav 52:613–619. CrossRefGoogle Scholar
  31. Grim T (2007) Experimental evidence for chick discrimination without recognition in a brood parasite host. P R Soc B 274:373–381. CrossRefGoogle Scholar
  32. Grim T, Kleven O, Mikulica O (2003) Nestling discrimination without recognition: a possible defence mechanism for hosts towards cuckoo parasitism? P R Soc B 270(Suppl):S73–S75. CrossRefGoogle Scholar
  33. Guigueno MF, Sealy SG (2010) Clutch abandonment by parasitized Yellow Warblers: egg burial or nest desertion? Condor 112:399–406. CrossRefGoogle Scholar
  34. Hauber ME, Dearborn DC (2003) Parentage without parental care: what to look for in genetic studies of obligate brood-parasitic mating systems. Auk 120:1–13.;2 CrossRefGoogle Scholar
  35. Hoover JP (2003) Multiple effects of brood parasitism reduce the reproductive success of Prothonotary Warblers, Protonotaria citrea. Anim Behav 65:923–934. CrossRefGoogle Scholar
  36. Hoover JP, Reetz MJ (2006) Brood parasitism increases provisioning rate, and reduces offspring recruitment and adult return rates, in a cowbird host. Oecologia 149:165–173. CrossRefPubMedGoogle Scholar
  37. Hosoi S, Rothstein SI (2000) Nest desertion and cowbird parasitism: evidence for evolved responses and evolutionary lag. Anim Behav 59:823–840. CrossRefPubMedGoogle Scholar
  38. Hudson WH (1874) Notes on the procreant instincts of the three species of Molothrus found in Buenos Aires. Proc Zool Soc Lond 11:153–174Google Scholar
  39. Ibáñez-Álamo J, Arco L, Soler M (2012) Experimental evidence for a predation cost of begging using active nests and real chicks. J Ornithol 153:801–807. CrossRefGoogle Scholar
  40. Jelínek V, Karasová T, Weidinger K, Procházka P, Honza M (2016) Do Common Cuckoo chicks suffer nest predation more than host nestlings? Behav Ecol Sociobiol. CrossRefGoogle Scholar
  41. Kilner RM, Langmore NE (2011) Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes. Biol Rev 86:836–852. CrossRefPubMedGoogle Scholar
  42. Langmore NE, Hunt S, Kilner RM (2003) Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422:157–160. CrossRefPubMedGoogle Scholar
  43. Langmore NE, Stevens M, Maurer G, Heinsohn R, Hall ML, Peters A, Kilner RM (2011) Visual mimicry of host nestlings by cuckoos. Proc R Soc B 278:2455–2463. CrossRefPubMedGoogle Scholar
  44. Lichtenstein G (2001) Selfish begging by Screaming Cowbirds, a mimetic brood parasite of the Bay-winged Cowbird. Anim Behav 61:1151–1158. CrossRefGoogle Scholar
  45. Llambías PE, Ferretti V, Reboreda JC (2006) Egg discrimination and sex-specific pecking behaviour in parasitic cowbirds. Ethology 112:1128–1135. CrossRefGoogle Scholar
  46. López AV, Fiorini VD, Ellison K, Peer BD (2018) Thick eggshells of brood parasitic cowbirds protect their eggs and damage host eggs during laying. Behav Ecol 29:965–973. CrossRefGoogle Scholar
  47. Lowther PE (2018) Lists of victims and hosts of the parasitic cowbirds (Molothrus). Field Museum. Accessed 17 Dec 2018
  48. Mann CF (2017) A taxonomic review of obligate and facultative interspecific avian brood parasitism. In: Soler M (ed) Avian brood parasitism: behaviour ecology, evolution and coevolution. Springer, Cham, pp 61–92CrossRefGoogle Scholar
  49. Martín-Gálvez D, Soler M, Soler JJ, Martín-Vivaldi M, Palomino JJ (2005) Food acquisition by Common Cuckoo chicks in Rufous Bush Robin nests and the advantage of eviction behaviour. Anim Behav 70:1313–1321. CrossRefGoogle Scholar
  50. Mason P (1980) Ecological and evolutionary aspects of host selection in cowbirds. PhD thesis, University of Texas, AustinGoogle Scholar
  51. Mason P (1986) Brood parasitism in a host generalist, the Shiny Cowbird. I. The quality of different species as hosts. Auk 103:52–60. CrossRefGoogle Scholar
  52. Mason P (1987) Pair formation in cowbirds: evidence found for Screaming but not Shiny Cowbirds. Condor 89:349–356. CrossRefGoogle Scholar
  53. Mason P, Rothstein SI (1986) Coevolution and avian brood parasitism. Cowbird eggs show evolutionary response to host discrimination. Evolution 40:1207–1214. CrossRefPubMedGoogle Scholar
  54. Mermoz ME, Fernández GJ (2003) Breeding success of a specialist brood parasite, the Screaming Cowbird, parasitizing an alternative host. Condor 105:63–72.;2 CrossRefGoogle Scholar
  55. Mermoz M, Ornelas J (2004) Phylogenetic analysis of life-history adaptations in parasitic cowbirds. Behav Ecol 15:109–119. CrossRefGoogle Scholar
  56. Moksnes A, Røskaft E, Braa TA, Korsnes L, Lampe HM, Pedersen HC (1991) Behavioural responses of potential hosts towards artificial cuckoo eggs and dummies. Behaviour 116:64–89. CrossRefGoogle Scholar
  57. Morton ES, Farabaugh SM (1979) Infanticide and other adaptations of the nestling Striped Cuckoo Tapera naevia. Ibis 121:212–213. CrossRefGoogle Scholar
  58. Moskát C, Fuisz TI (1999) Reactions of Red-Backed Shrikes Lanius collurio to artificial Cuckoo Cuculus canorus eggs. J Avian Biol 30:175–181. CrossRefGoogle Scholar
  59. Moskát C, Hauber ME (2007) Conflict between egg recognition and egg rejection decisions in Common Cuckoo (Cuculus canorus) hosts. Anim Cogn 10:377–386. CrossRefPubMedGoogle Scholar
  60. Moskát C, Honza M (2002) European Cuckoo Cuculus canorus parasitism and host’s rejection behaviour in a heavily parasitized Great Reed Warbler Acrocephalus arundinaceus population. Ibis 144:614–622. CrossRefGoogle Scholar
  61. Neudorf DL, Sealy SG (1992) Reactions of four passerine species to threats of predation and cowbird parasitism: enemy recognition or generalized responses? Behaviour 123:84–105. CrossRefGoogle Scholar
  62. Neudorf DL, Sealy SG (1994) Sunrise nest attentiveness in cowbird hosts. Condor 96:162–169. CrossRefGoogle Scholar
  63. Nicolai J (1964) Der Brutparasitismus der Viduinae als ethologisches Problem. Z Tierpsychol 21:129–204. CrossRefGoogle Scholar
  64. Noh HJ, Gloag R, Langmore NE (2018) True recognition of nestlings by hosts selects for mimetic cuckoo chicks. Proc R Soc B 285:20180726. CrossRefPubMedGoogle Scholar
  65. Payne RB (2005) Nestling mouth markings and colors of Old World finches Estrildidae: mimicry and coevolution of nesting finches and their Vidua brood parasites. Misc Publ Mus Zool Univ Mich 194:1–45Google Scholar
  66. Payne RB, Payne LL (1994) Song mimicry and species associations in West African indigobirdsidua V with Quail-finch Ortygospiza atricollis, Goldbreast Amandava subflava and Brown Twinspot Clytospiza monteiri. Ibis 136:291–304. CrossRefGoogle Scholar
  67. Payne RB, Payne LL (1998) Brood parasitism by cowbirds: risks and effects on reproductive success and survival in Indigo Buntings. Behav Ecol 9:64–73. CrossRefGoogle Scholar
  68. Peer BD (2006) Egg destruction and egg removal by avian brood parasites: adaptiveness and consequences. Auk 123:16–22. CrossRefGoogle Scholar
  69. Peer BD, Sealy SG (2004) Fate of grackle (Quiscalus spp.) defenses in the absence of brood parasitism: implications for long-term parasite-host coevolution. Auk 121:1172–1186. CrossRefGoogle Scholar
  70. Peer BD, Kuehn MJ, Rothstein SI, Fleischer RC (2011) Persistence of host defence behaviour in the absence of avian brood parasitism. Biol Lett 7:670–673. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rasmussen JL, Sealy SG (2006) Hosts feeding only Brown-headed Cowbird fledglings: where are the host fledglings? J Field Ornithol 77:269–279. CrossRefGoogle Scholar
  72. Ridley AR, Thompson AM (2012) The effect of Jacobin Cuckoo Clamator jacobinus parasitism on the body mass and survival of young in a new host species. Ibis 154:195–199. CrossRefGoogle Scholar
  73. Rojas Ripari JM, Segura LN, Reboreda JC, De Mársico MC (2019a) Non-mimetic Shiny Cowbird nestlings better escape discrimination by baywings in the absence of host nestmates. Behav Ecol Sociobiol (in review) Google Scholar
  74. Rojas Ripari JM, Ursino CA, Reboreda JC, De Mársico MC (2019b) Innate development of acoustic signals for host parent–offspring recognition in the brood-parasitic Screaming Cowbird Molothrus rufoaxillaris. Ibis. press) CrossRefGoogle Scholar
  75. Røskaft E, Moksnes A, Meilvang D, Bicík V, Jemelíková J, Honza M (2002) No evidence for recognition errors in Acrocephalus warblers. J Avian Biol 33:31–38. CrossRefGoogle Scholar
  76. Rothstein SI (1990) A model system for coevolution: avian brood parasitism. Annu Rev Ecol Syst 21:481–508. CrossRefGoogle Scholar
  77. Rothstein SI (2001) Relic behaviours, coevolution and the retention versus loss of host defences after episodes of avian brood parasitism. Anim Behav 61:95–107. CrossRefPubMedGoogle Scholar
  78. Sackmann P, Reboreda JC (2003) A comparative study of Shiny Cowbird parasitism of two large hosts, the Chalk-browed Mockingbird and the Rufous-bellied Thrush. Condor 105:728–736. CrossRefGoogle Scholar
  79. Sato NJ, Tokue K, Noske RA, Mikami OK, Ueda K (2010) Evicting cuckoo nestlings from the nest: a new anti-parasitism behaviour. Biol Lett 6:67–69. CrossRefPubMedGoogle Scholar
  80. Scardamaglia RC, Reboreda JC (2014) Ranging behavior of female and male Shiny Cowbirds and Screaming Cowbirds while searching for host nests. Auk 131:610–618. CrossRefGoogle Scholar
  81. Scardamaglia RC, Fiorini VD, Kacelnik A, Reboreda JC (2017) Planning host exploitation through prospecting visits by parasitic cowbirds. Behav Ecol Sociobiol. CrossRefGoogle Scholar
  82. Scardamaglia RC, Kacelnik A, Reboreda JC (2018) Roosting behaviour is related to reproductive strategy in brood parasitic cowbirds. Ibis 160:779–789. CrossRefGoogle Scholar
  83. Sealy SG (1992) Removal of Yellow Warbler eggs in association with cowbird parasitism. Condor 94:40–54. CrossRefGoogle Scholar
  84. Sealy SG, Neudorf DL (1995) Male Northern Orioles eject cowbird eggs: implications for the evolution of rejection behavior. Condor 97:369–375. CrossRefGoogle Scholar
  85. Soler M (2014) Long-term coevolution between avian brood parasites and their hosts. Biol Rev 89:688–704. CrossRefPubMedGoogle Scholar
  86. Soler M (2017) Brood parasitism in birds: a coevolutionary point of view. In: Soler M (ed) Avian brood parasitism: behaviour, ecology, evolution and coevolution. Springer, Cham, pp 1–19CrossRefGoogle Scholar
  87. Soler M, Møller AP (1990) Duration of sympatry and coevolution between the Great Spotted Cuckoo and its Magpie host. Nature 343:748–750. CrossRefGoogle Scholar
  88. Soler M, Soler JJ (1991) Growth and development of Great Spotted Cuckoos and their Magpie host. Condor 93:49–54. CrossRefGoogle Scholar
  89. Soler M, Soler JJ, Martinez J (1997) Great Spotted Cuckoos improve their reproductive success by damaging Magpie host eggs. Anim Behav 54:1227–1233. CrossRefPubMedGoogle Scholar
  90. Soler JJ, Martínez JG, Soler M, Moller AP (1999) Genetic and geographic variation in rejection behavior of cuckoo eggs by European Magpie populations: an experimental test of rejecter-gene flow. Evolution 53:947–956. CrossRefPubMedGoogle Scholar
  91. Soler M, De Neve L, Roncalli G, Macías-Sánchez E, Ibáñez-Álamo JD, Pérez-Contreras T (2014) Great Spotted Cuckoo fledglings are disadvantaged by magpie host parents when reared together with magpie nestlings. Behav Ecol Sociobiol 68:333–342. CrossRefGoogle Scholar
  92. Soler M, Ruiz-Raya F, Roncalli G, Ibáñez-Álamo JD (2017) Relationships between egg-recognition and egg-ejection in a grasp-ejector species. PLoS One 12(2):e0166283. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Sorenson M, Payne R (2002) Molecular genetic perspectives on avian brood parasitism. Integr Comp Biol 42:388–400. CrossRefPubMedGoogle Scholar
  94. Spottiswoode CN, Colebrook-Robjent JFR (2007) Egg puncturing by the brood parasitic Greater Honeyguide and potential host counteradaptations. Behav Ecol 18:792–799. CrossRefGoogle Scholar
  95. Spottiswoode CN, Koorevaar J (2011) A stab in the dark: chick killing by brood parasitic Honeyguides. Biol Lett 8:241–244. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Spottiswoode CN, Stevens M (2012) Host-parasite arms races and rapid changes in bird egg appearance. Am Nat 179:633–648. CrossRefPubMedGoogle Scholar
  97. Spottiswoode CN, Stryjewski KF, Quader S, Colebrook-Robjent JFR, Sorenson MD (2011) Ancient host specificity within a single species of brood parasitic bird. P Natl Acad Sci USA 108:17738–17742. CrossRefGoogle Scholar
  98. Stoddard MC, Stevens M (2010) Pattern mimicry of host eggs by the Common Cuckoo, as seen through a bird’s eye. Proc R Soc B 277:1387–1393. CrossRefPubMedGoogle Scholar
  99. Tokue K, Ueda K (2010) Mangrove Gerygones Gerygone laevigaster eject Little Bronze-cuckoo Chalcites minutillus hatchlings from parasitized nests. Ibis 152:835–839. CrossRefGoogle Scholar
  100. Tuero D, Fiorini V, Reboreda J (2007) Effects of Shiny Cowbird Molothrus bonariensis parasitism on different components of House Wren Troglodytes aedon reproductive success. Ibis 149:521–527. CrossRefGoogle Scholar
  101. Ursino CA, De Mársico MC, Sued M, Farall A, Reboreda JC (2011) Brood parasitism disproportionately increases nest provisioning and helper recruitment in a cooperatively breeding bird. Behav Ecol Sociobiol 65:2279–2286. CrossRefGoogle Scholar
  102. Ursino CA, Facchinetti C, Reboreda JC (2012) Preformative molt in brood parasitic Screaming (Molothrus rufoaxillaris) and Shiny (M. bonaeriensis) Cowbirds. Ornitol Neotrop 23:159–168Google Scholar
  103. Ursino CA, Gloag R, Reboreda JC, De Mársico MC (2018) Host provisioning behavior favors mimetic begging calls in a brood-parasitic cowbird. Behav Ecol 29:328–332. CrossRefGoogle Scholar
  104. Wang N, Kimball RT (2012) Nestmate killing by obligate brood parasitic chicks: is this linked to obligate siblicidal behavior? J Ornithol 153:825–831. CrossRefGoogle Scholar
  105. Welbergen JA, Davies NB (2009) Strategic variation in mobbing as a front line of defense against brood parasitism. Curr Biol 19:235–240. CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, IEGEBA-UBA-CONICETUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations