Advertisement

Journal of Ornithology

, Volume 160, Issue 4, pp 1043–1051 | Cite as

Extra-pair paternity and sperm length variation in the socially monogamous Fieldfare Turdus pilaris

  • Oddmund KlevenEmail author
  • Aksel N. Fiske
  • Magnus Håvik
  • Rolf T. Kroglund
  • Jan E. Østnes
  • Tim Schmoll
Original Article

Abstract

Basic knowledge about the genetic mating system is lacking for the great majority of the approximately 10,000 extant bird species. Filling this knowledge gap is not only critical for a comprehensive understanding of the reproductive ecology of each particular species, but also for increasing the power of comparative approaches to uncover and explain interspecific patterns of variation in avian reproductive traits. Using six polymorphic microsatellite markers, we here present the first parentage study in the socially monogamous Fieldfare Turdus pilaris. In parallel, we also examine variation in sperm morphology and relationships between sperm traits and paternity loss of social males. Across two study years, extra-pair paternity was detected in 46.4% (95% CI: 28.9–64.9%) of 28 broods, and on average 27.6% (95% CI: 16.8–41.9%) of nestlings per brood were extra-pair offspring in a population in central Norway. These observed extra-pair paternity rates fall within the range of reported estimates of extra-pair paternity for four congeneric Turdus species (between 36 and 65% of broods and 27 and 46% of nestlings). Sperm total length was 87.0 ± 2.9 (SD) μm (range 79.7‒96.8 μm) and 59.3% (95% CI: 37.1–73.3%) of the total phenotypic variation in sperm total length was explained by differences between sperm samples collected from 17 different males. The among-sample coefficient of variation in mean sperm total length was 2.70% (95% CI: 1.99–3.17%). We found no evidence for effects of sperm total length or relative midpiece length on loss of paternity among broods of 13 males.

Keywords

Extra-pair copulation Passerine Paternity loss Social monogamy Sperm morphology 

Zusammenfassung

Fremdvaterschaften und Variation der Spermienlänge bei der sozial monogamen Wacholderdrossel Turdus pilaris

Für die überwiegende Mehrheit der rund 10.000 derzeit beschriebenen Vogelarten fehlen jegliche Studien über das genetische Paarungssystem. Diese Wissenslücke zu schließen ist nicht nur von entscheidender Bedeutung für ein umfassendes Verständnis der Reproduktionsökologie jeder einzelnen Art, sondern auch um im Rahmen vergleichender Ansätze interspezifische Variationsmuster reproduktiver Merkmale von Vögeln besser verstehen zu können. Basierend auf sechs polymorphen Mikrosatellitenmarkern präsentieren wir hier die erste Elternschaftsstudie bei der sozial monogamen Wacholderdrossel Turdus pilaris. Parallel untersuchte wir zudem Variation in der Spermienmorphologie und den Zusammenhang zwischen Spermienmerkmalen und Vaterschaftsverlusten in Bruten sozialer Männchen. Über zwei Studienjahre hinweg wurde in einer Population in Mittelnorwegen in 46,4% (95% Konfidenz: 28,9%–64,9%) von 28 Bruten mindestens ein außerhalb des Paarbunds gezeugtes Junges festgestellt und im Mittel waren 27,6% (95% CI: 16,8%–41,9%) der Nestlinge pro Brut außerhalb des Paarbundes gezeugt. Diese beobachteten Fremdvaterschaftsraten lagen damit innerhalb des Bereichs der für vier andere Turdus-Arten ermittelt wurde (zwischen 36 und 65% der Bruten und 27 und 46% der Nestlinge). Die Spermiengesamtlänge betrug 87,0 ± 2,9 (SD) μm (Spannbreite 79,7–96,8 μm) und 59,3% (95% Konfidenz: 37,1%–73,3%) der gesamten phänotypischen Variation in der Spermienlänge wurde durch Unterschiede zwischen den Spermienproben erklärt, die von 17 verschiedenen Männchen stammten. Der mittlere Variationskoeffizient der Spermiengesamtlänge innerhalb von Spermienproben betrug 2,70% (95% CI: 1,99%–3,17%). Wir haben keine Belege für Effekte der Spermiengesamtlänge oder der relative Länge des Mittelstücks auf den Verlust von Vaterschaften in 13 Bruten verschiedener Männchen gefunden.

Notes

Acknowledgements

We are grateful to Øyvind L. Arnekleiv for assistance with fieldwork, Roar Morten Graff for allowing us to work on his property, Renate Feist for sperm photography and Sonja Schindler for sperm morphometry. Thanks to Peter Korsten for comments on an earlier version of this manuscript. TS benefitted from discussions within the Collaborative Research Center TRR 212 (NC3) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer 316099922—TRR 212. Permits to capture, handle and ring the birds were issued by the Norwegian Directorate for Nature Management to OK (A-license 1082), AF (C-license 1539), MF (C-license 1540), RTK (A-license 510) and JEØ (A-license 666). Permits to colour band and sample blood and semen were approved by the Norwegian Animal Research Authority (permit 12088). Financial support was received from the Norwegian Institute for Nature Research (NINA) and Nord University.

Supplementary material

10336_2019_1687_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)

References

  1. Arnold KE, Owens IPF (2002) Extra-pair paternity and egg dumping in birds: life history, parental care and the risk of retaliation. Proc R Soc B 269(1497):1263–1269CrossRefGoogle Scholar
  2. Bennison C, Hemmings H, Slate J, Birkhead TR (2015) Long sperm fertilize more eggs in a bird. Proc R Soc B 282(1799):20141897.  https://doi.org/10.1098/rspb.2014.1897 CrossRefPubMedGoogle Scholar
  3. Biagolini-Jr. C, Costa MC, Perrella DF, Zima PVQ, Ribeiro-Silva L, Francisco MR (2016) Extra-pair paternity in a neotropical rainforest songbird, the white-necked thrush Turdus albicollis (Aves: Turdidae). Zoologia.  https://doi.org/10.1590/s1984-4689zool-20160068 CrossRefGoogle Scholar
  4. Biagolini-Jr. C, Westneat DF, Francisco MR (2017) Does habitat structural complexity influence the frequency of extra-pair paternity in birds? Behav Ecol Sociobiol 71(7):101.  https://doi.org/10.1007/s00265-017-2329-x CrossRefGoogle Scholar
  5. Birkhead TR, Hosken DJ, Pitnick S (eds) (2009) Sperm biology: an evolutionary perspective. Academic Press, OxfordGoogle Scholar
  6. Bonier F, Eikenaar C, Martin PR, Moore IT (2014) Extrapair paternity rates vary with latitude and elevation in Emberizid sparrows. Am Nat 183(1):54–61.  https://doi.org/10.1086/674130 CrossRefPubMedGoogle Scholar
  7. Briskie JV, Montgomerie R (1992) Sperm size and sperm competition in birds. Proc R Soc B 247(1319):89–95CrossRefGoogle Scholar
  8. Calhim S, Immler S, Birkhead TR (2007) Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS One 2(5):e413CrossRefGoogle Scholar
  9. Cramer EA, Laskemoen T, Kleven O, LaBarbera K, Lovette I, Lifjeld J (2013) No evidence that sperm morphology predicts paternity success in wild house wrens. Behav Ecol Sociobiol 67(11):1845–1853.  https://doi.org/10.1007/s00265-013-1594-6 CrossRefGoogle Scholar
  10. Cramp S (ed) (1988) Handbook of the birds of Europe, the Middle East and North Africa: the birds of the western Palearctic, vol V: tyrant flycatchers to thrushes. Oxford University Press, New YorkGoogle Scholar
  11. Crowe SA, Kleven O, Delmore KE, Laskemoen T, Nocera JJ, Lifjeld JT, Robertson RJ (2009) Paternity assurance through frequent copulations in a wild passerine with intense sperm competition. Anim Behav 77:183–187CrossRefGoogle Scholar
  12. Dawson D, Bird S, Horsburgh G, Ball A (2015) Autosomal and Z-linked microsatellite markers enhanced for cross-species utility and assessed in a range of birds, including species of conservation concern. Conserv Genet Resour 7(4):881–886.  https://doi.org/10.1007/s12686-015-0495-6 CrossRefGoogle Scholar
  13. Dunn PO, Whittingham LA, Pitcher TE (2001) Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55(1):161–175CrossRefGoogle Scholar
  14. Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, PrincetonGoogle Scholar
  15. Edme A, Zobač P, Korsten P, Albrecht T, Schmoll T, Krist M (2019) Moderate heritability and low evolvability of sperm morphology in a species with high risk of sperm competition, the collared flycatcher Ficedula albicollis. J Evol Biol 32(3):205–217.  https://doi.org/10.1111/jeb.13404 CrossRefPubMedGoogle Scholar
  16. Forstmeier W, Nakagawa S, Griffith SC, Kempenaers B (2014) Female extra-pair mating: adaptation or genetic constraint? Trends Ecol Evol 29(8):456–464.  https://doi.org/10.1016/j.tree.2014.05.005 CrossRefPubMedGoogle Scholar
  17. Garcia-Del-Rey E, Kleven O, Lifjeld JT (2012) Extrapair paternity in insular African blue tits Cyanistes teneriffae is no less frequent than in continental Eurasian blue tits Cyanistes caeruleus. Ibis 154(4):862–867.  https://doi.org/10.1111/j.1474-919X.2012.01241.x CrossRefGoogle Scholar
  18. Griffith SC, Owens IPF, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11(11):2195–2212CrossRefGoogle Scholar
  19. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7(8):1071–1075CrossRefGoogle Scholar
  20. Hesler M (2009) Song complexity in common blackbirds-an honest signal of male quality? Ph.D. thesis, University of Copenhagen, CopenhagenGoogle Scholar
  21. Immler S, Calhim S, Birkhead TR (2008) Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62(6):1538–1543CrossRefGoogle Scholar
  22. Kempenaers B, Schlicht E (2010) Extra-pair behaviour. In: Kappeler P (ed) Animal behaviour: evolution and mechanisms. Springer, BerlinGoogle Scholar
  23. Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62(2):494–499CrossRefGoogle Scholar
  24. Kleven O, Fossøy F, Laskemoen T, Robertson RJ, Rudolfsen G, Lifjeld JT (2009) Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63(9):2466–2473.  https://doi.org/10.1111/j.1558-5646.2009.00725.x CrossRefGoogle Scholar
  25. Laskemoen T, Kleven O, Fossøy F, Lifjeld JT (2007) Intraspecific variation in sperm length in two passerine species, the bluethroat Luscinia svecica and the willow warbler Phylloscopus trochilus. Ornis Fenn 84:131–139Google Scholar
  26. Laskemoen T, Kleven O, Fossøy F, Robertson RJ, Rudolfsen G, Lifjeld JT (2010) Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the tree swallow Tachycineta bicolor. Behav Ecol Sociobiol 64(9):1473–1483.  https://doi.org/10.1007/s00265-010-0962-8 CrossRefGoogle Scholar
  27. Laskemoen T, Albrecht T, Bonisoli-Alquati A, Cepak J, de Lope F, Hermosell I, Johannessen LE, Kleven O, Marzal A, Mousseau TA, Møller AP, Robertson RJ, Rudolfsen G, Saino N, Vortman Y, Lifjeld JT (2013a) Variation in sperm morphometry and sperm competition among barn swallow (Hirundo rustica) populations. Behav Ecol Sociobiol 67(2):301–309.  https://doi.org/10.1007/s00265-012-1450-0 CrossRefGoogle Scholar
  28. Laskemoen T, Kleven O, Johannessen LE, Fossøy F, Robertson RJ, Lifjeld JT (2013b) Repeatability of sperm size and motility within and between seasons in the barn swallow (Hirundo rustica). J Ornithol 154(4):955–963.  https://doi.org/10.1007/s10336-013-0961-4 CrossRefGoogle Scholar
  29. Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ (2010) Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS One 5(10):e13456CrossRefGoogle Scholar
  30. Lüpold S, Linz GM, Birkhead TR (2009) Sperm design and variation in the New World blackbirds (Icteridae). Behav Ecol Sociobiol 63(6):899–909.  https://doi.org/10.1007/s00265-009-0733-6 CrossRefGoogle Scholar
  31. Lüpold S, Westneat DF, Birkhead TR (2011) Geographical variation in sperm morphology in the red-winged blackbird (Agelaius phoeniceus). Evol Ecol 25(2):373–390.  https://doi.org/10.1007/s10682-010-9410-5 CrossRefGoogle Scholar
  32. Lüpold S, Birkhead T, Westneat D (2012) Seasonal variation in ejaculate traits of male red-winged blackbirds (Agelaius phoeniceus). Behav Ecol Sociobiol 66(12):1607–1617.  https://doi.org/10.1007/s00265-012-1415-3 CrossRefGoogle Scholar
  33. McDonald DB, Potts WK (1994) Cooperative display and relatedness among males in a lek-mating bird. Science 266(5187):1030–1032CrossRefGoogle Scholar
  34. Møller AP, Briskie JV (1995) Extra-pair paternity, sperm competition and the evolution of testis size in birds. Behav Ecol Sociobiol 36(5):357–365CrossRefGoogle Scholar
  35. Otter K, Ratcliffe L, Michaud D, Boag PT (1998) Do female black-capped chickadees prefer high-ranking males as extra-pair partners? Behav Ecol Sociobiol 43(1):25–36CrossRefGoogle Scholar
  36. Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567CrossRefGoogle Scholar
  37. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Petrie M, Kempenaers B (1998) Extra-pair paternity in birds: explaining variation between species and populations. Trends Ecol Evol 13(2):52–58CrossRefGoogle Scholar
  39. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  40. Rasband WS (1997) ImageJ. US National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/
  41. Richardson DS, Jury FL, Dawson DA, Salgueiro P, Komdeur J, Burke T (2000) Fifty Seychelles warbler (Acrocephalus sechellensis) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds. Mol Ecol 9(12):2226–2231CrossRefGoogle Scholar
  42. Rowe KMC, Weatherhead PJ (2007) Social and ecological factors affecting paternity allocation in American robins with overlapping broods. Behav Ecol Sociobiol 61(8):1283–1291CrossRefGoogle Scholar
  43. Sætre CLC, Johnsen A, Stensrud E, Cramer ERA (2018) Sperm morphology, sperm motility and paternity success in the bluethroat (Luscinia svecica). PLoS One 13(3):e0192644.  https://doi.org/10.1371/journal.pone.0192644 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schmoll T, Kleven O (2011) Sperm dimensions differ between two coal tit Periparus ater populations. J Ornithol 152:515–520CrossRefGoogle Scholar
  45. Schmoll T, Sanciprian R, Kleven O (2016) No evidence for effects of formalin storage duration or solvent medium exposure on avian sperm morphology. J Ornithol 157(2):647–652.  https://doi.org/10.1007/s10336-015-1321-3 CrossRefGoogle Scholar
  46. Schmoll T, Kleven O, Rusche M (2018) Individual phenotypic plasticity explains seasonal variation in sperm morphology in a passerine bird. Evol Ecol Res 19:561–574Google Scholar
  47. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69(1):82–90CrossRefGoogle Scholar
  48. Slate J, Hale MC, Birkhead TR (2007) Simple sequence repeats in zebra finch (Taeniopygia guttata) expressed sequence tags: a new resource for evolutionary genetic studies of passerines. BMC Genomics.  https://doi.org/10.1186/1471-2164-8-52 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3d edn. Freeman, New YorkGoogle Scholar
  50. Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8(11):1639–1644.  https://doi.org/10.1111/2041-210X.12797 CrossRefGoogle Scholar
  51. Støstad HN, Johnsen A, Lifjeld JT, Rowe M (2018) Sperm head morphology is associated with sperm swimming speed: a comparative study of songbirds using electron microscopy. Evolution 72(9):1918–1932.  https://doi.org/10.1111/evo.13555 CrossRefPubMedGoogle Scholar
  52. Stutchbury BJM, Morton ES, Piper WH (1998) Extra-pair mating system of a synchronously breeding tropical songbird. J Avian Biol 29(1):72–78CrossRefGoogle Scholar
  53. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Norwegian Institute for Nature Research (NINA)TrondheimNorway
  2. 2.Faculty of Biosciences and AquacultureNord UniversitySteinkjerNorway
  3. 3.Evolutionary BiologyBielefeld UniversityBielefeldGermany

Personalised recommendations