Journal of Ornithology

, Volume 160, Issue 4, pp 1109–1119 | Cite as

Habitat use by migrating Whimbrels (Numenius phaeopus) as determined by bio-tracking at a stopover site in the Yellow Sea

  • Fenliang Kuang
  • Wei Wu
  • Wanjuan Ke
  • Qiang Ma
  • Weipin Chen
  • Xuesong Feng
  • Zhengwang Zhang
  • Zhijun MaEmail author
Original Article


Stopover sites are critical for refueling and resting by migrating birds. Clarifying the habitat requirements of migratory birds during stopover is important for understanding migration ecology and for conservation management. Habitat use by migratory birds at stopover sites, however, has been inadequately studied, and individual variation in habitat use among species is largely unexplored. We tracked the movement of migrating Whimbrels, Numenius phaeopus, using Global Positioning System–Global System for Mobile Communication tags at Chongming Dongtan, an important stopover site in the South Yellow Sea, China, in spring 2016 and in spring and autumn 2017. Multinomial logistic regression and multimodel inference were used to detect the effects of the individual bird, the diel factor (day vs. night), and tide height on the habitat use by Whimbrels during the stopover. The activity intensity of Whimbrels was lower during the night than during the day, while the maximum distance that tagged Whimbrels moved was similar between day and night. The saltmarsh and mudflat were intensively used by all of the individuals in all three seasons: > 50% and 20% of all records were obtained from the saltmarsh and mudflat, respectively. Habitat use significantly differed among individuals; the farmland and woodland were used by some individuals in spring 2016, while the restoration wetland near the intertidal area was used by some individuals in 2017. In general, the saltmarsh, farmland, and woodland were more frequently used in the daytime, while the mudflat was more frequently used at night. As tide height increased, the use of the mudflat decreased while the use of the saltmarsh increased. The results suggest that individual-based bio-tracking can provide detailed data on habitat use both during the day and at night. Differences in habitat use among individuals and periods highlight the importance of diverse habitats for bird conservation.


Individual difference Diel variation Tide height Chongming Dongtan Migration Bird conservation 


Habitat-Nutzung ziehender Regenbrachvögel ( Numenius phaeopus ): eine telemetrische Studie in einem Rastgebiet am Gelben Meer

Für ziehende Vögel sind die Rastgebiete sehr wichtig, um sich dort auszuruhen und neue Nahrung aufzunehmen. Das Verständnis der Ökologie des Vogelzugs zu verstehen und ein wirksames Naturschutz-Management anwenden zu können, hängen davon ab, die Anforderungen an die Rastgebiete möglichst gut zu kennen. Die Nutzung dieser Orte durch die Zugvögel ist bislang jedoch nur unzureichend untersucht worden, und über eine unterschiedliche Nutzung durch unterschiedliche Vogelarten weiß man nur sehr wenig. Im Frühjahr 2016 und Frühjahr und Herbst 2017 verfolgten wir mithilfe von GPS-GSM-Sendern die Ortsbewegungen ziehender Regenbrachvögel (Numenius phaeopus) bei Chongming Dongtan, einem wichtigen Rastgebiet am südlichen Gelben Meer in China. Mittels multinomialer logistischer Regressionsanalysen und Multimodel-Inferenz wurden prüften wir den Einfluss des Individuums, der Tageszeit (Tag vs. Nacht) und der Gezeitenhöhe auf die Habitatnutzung der Regenbrachvögel. Die Aktivitätsintensität der Regenbrachvögel war während der Nacht niedriger als am Tag, während die maximale Entfernung, die die markierten Tiere zurücklegten, zwischen Tag und Nacht ähnlich waren. Alle Tiere nutzten die Salzwiesen und Wattflächen intensiv in allen drei Zugzeiten: > 50% und 20% aller Nachweise stammten von den Salzwiesen bzw. dem Watt. Die Nutzung des Habitats variierte jedoch sehr stark zwischen den einzelnen Tieren. So nutzten im Frühjahr 2016 einige Vögel Ackerland und Buschland, während wiederhergestellte Feuchtbiotope nahe der Gezeitenzonen von manchen Tieren im Frühjahr 2017 genutzt wurden. Generell wurden die Salzwiesen, Acker- und Buschflächen stärker während des Tages besucht, das Watt öfters in der Nacht. Mit steigender Fluthöhe nahm die Nutzung des Watts ab und die der Salzwiesen zu. Diese Ergebnisse legen nahe, dass individuelle Telemetrie detaillierte Daten über die Habitatnutzung bei Tag und Nacht liefern kann. Die unterschiedliche Habitatnutzung von Einzeltieren und während verschiedener Perioden unterstreicht die Bedeutung unterschiedlicher Habitate für den Vogelschutz.



We thank the CMDT National Nature Reserve for supporting the fieldwork. We also thank Weiguo Jin, Guochang Ni, Hongxi Zang, Jingyao Niu, and the volunteers for their assistance in the fieldwork, and Xiaodan Wang for help in organizing the draft. We would like thank two anonymous reviewers and the editor for their constructive comments on the manuscript. This study was financially supported by the National Key Research and Development Program of China (2018YFC1406402), the National Natural Science Foundation of China (31830089 and 31772467), the Science and Technology Department of Shanghai (18DZ1205002), the World Wide Fund for Nature Beijing Office (10003881), and the MOE Key Laboratory for Biodiversity Science and Ecological Engineering. All of the fieldwork was conducted with the permission and support of the CMDT National Nature Reserve and strictly complied with the requirements of the Chinese Wild Animal Protection Law.

Supplementary material

10336_2019_1683_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2492 kb)


  1. Agresti A (2007) An introduction to categorical data analysis, 2nd edn. Wiley, HobokenGoogle Scholar
  2. Alves JA, Lourenco PM, Piersma T, Sutherland WJ, Gill JA (2010) Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa. Bird Study 57:381–391Google Scholar
  3. Barter M (2002) Shorebirds of the Yellow Sea: importance, threats and conservation status. Wetlands International, CanberraGoogle Scholar
  4. Bartoń K (2017) MuMIn: multi-model inference. R package version 1.40.0. Accessed 22 Oct 2017
  5. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Google Scholar
  6. Beauchamp G (2007) Exploring the role of vision in social foraging: what happens to group size, vigilance, spacing, aggression and habitat use in birds and mammals that forage at night? Biol Rev 82:511–525PubMedGoogle Scholar
  7. Bivand R, Lewin-Koh N (2017) Maptools: tools for reading and handling spatial objects. R package version 0.9-2. Accessed 22 Aug 2017
  8. Block WM, Brennan LA (1993) The habitat concept in ornithology: theory and applications. Curr Ornithol 11:35–91Google Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  10. Burton NHK, Armitage MJS (2005) Differences in the diurnal and nocturnal use of intertidal feeding grounds by Redshank Tringa totanus. Bird Study 52:120–128Google Scholar
  11. Catry T, Alves JA, Gill JA, Gunnarsson TG, Granadeiro JP (2012) Sex promotes spatial and dietary segregation in a migratory shorebird during the non-breeding season. PLOS ONE 7:e33811PubMedPubMedCentralGoogle Scholar
  12. Choi CY, Gan XJ, Ma Q, Zhang KJ, Chen JK, Ma ZJ (2009) Body condition and fuel deposition patterns of calidrid sandpipers during migratory stopover. Ardea 97:61–70Google Scholar
  13. Choi CY, Gan XJ, Hua N, Wang Y, Ma ZJ (2014) The habitat use and home range analysis of Dunlin (Calidris alpina) in Chongming Dongtan, China and their conservation implications. Wetlands 34:255–266Google Scholar
  14. Cody ML (1985) Habitat selection in birds. Academic Press, New YorkGoogle Scholar
  15. Dias MP (2009) Use of salt ponds by wintering shorebirds throughout the tidal cycle. Waterbirds 32:531–537Google Scholar
  16. Duijns S, van Gils JA, Smart J, Piersma T (2015) Phenotype-limited distributions: short-billed birds move away during times that prey bury deeply. R Soc Open Sci 2:150073PubMedPubMedCentralGoogle Scholar
  17. Ens B, van de Kam J, Piersma T, Zwarts L (2004) Shorebirds: An illustrated behavioural ecology. KNNV, UtrechtGoogle Scholar
  18. Esser W, Voge S, Exo KM (2008) Day-night activity of intertidal invertebrates and methods to estimate prey accessibility for shorebirds. Senckenberg Marit 38:115–122Google Scholar
  19. Fonseca J, Basso E, Serrano D, Navedo JG (2017) Effects of tidal cycles on shorebird distribution and foraging behaviour in a coastal tropical wetland: insights for carrying capacity assessment. Estuar Coast Shelf S198:279–287Google Scholar
  20. Gibelli J, Dubois F (2017) Does personality affect the ability of individuals to track and respond to changing conditions? Behav Ecol 28:101–107Google Scholar
  21. Gillings S, Fuller RJ, Sutherland WJ (2005) Diurnal studies do not predict nocturnal habitat choice and site selection of European Golden-Plovers (Pluvialis apricaria) and Northern Lapwings (Vanellus vanellus). Auk 122:1249–1260Google Scholar
  22. Holtmann B, Santos ESA, Lara CE, Nakagawa S (2017) Personality-matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype–environment covariance. Proc R Soc B 284:20170943PubMedGoogle Scholar
  23. Hua N, Åkesson S, Zhou QY, Ma ZJ (2017) Springtime migratory restlessness and departure orientation of Great Knots (Calidris tenuirostris) in the south compared to the north Yellow Sea. Avian Res 8:20Google Scholar
  24. Hunan Global Messenger (2018) Wild Animal Micro Tracker operation instruction. Version 3.02. Accessed 22 Oct 2018
  25. Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348:aaa2478PubMedPubMedCentralGoogle Scholar
  26. Ma ZJ (2017) The importance of habitat protection for bird conservation. Bull Biol 52:6–8Google Scholar
  27. Ma ZJ, Wang Y, Gan XJ, Li B, Cai YT, Chen JK (2009) Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River Estuary, China. Environ Manage 43:1187–1200PubMedGoogle Scholar
  28. Ma ZJ, Hua N, Zhang X, Guo HQ, Zhao B, Ma Q, Xue WJ, Tang CD (2011) Wind conditions affect stopover decisions and fuel stores of shorebirds migrating through the south Yellow Sea. Ibis 153:755–767Google Scholar
  29. Mao JW (2017) Ten thousand mu of paddy fields were killed by saltwater intrusion at Chongming Dongtan: the responsible party is entangled but when can the rice can be replanted? Shanghai Observer. Accessed 22 Oct 2018
  30. Massey K, Cosgrove P, Massey F, Jackson D, Chapman M (2016) Habitat characteristics of breeding Eurasian Whimbrel Numenius phaeopus on mainland Shetland, Scotland, UK. Bird Study 63:500–508Google Scholar
  31. McConkey KR, Bell BD (2005) Activity and habitat use of waders are influenced by tide, time and weather. Emu 105:331–340Google Scholar
  32. McCurdy DG, Boates JS, Forbes MR (1997) Diurnal and nocturnal foraging by Semipalmated Sandpipers Calidris pusilla. J Avian Biol 28:353–356Google Scholar
  33. McNeil R, Rompre G (2010) Day and night feeding territoriality in Willets Catoptrophorus semipalmatus and Whimbrel Numenius phaeopus during the non-breeding season in the tropics. Ibis 137:169–176Google Scholar
  34. McNeil R, Díaz OD, Ildefonso LA, José RRS (1995) Day- and night-time prey availability for waterbirds in a tropical lagoon. Can J Zool 73:869–878Google Scholar
  35. Murchison CR, Zharikov Y, Nol E (2016) Human activity and habitat characteristics influence shorebird habitat use and behaviour at a Vancouver Island migratory stopover site. Environ Manage 58:386–398PubMedGoogle Scholar
  36. National Marine Data and Information Service (2016) Tide tables. Ocean, BeijingGoogle Scholar
  37. National Marine Data and Information Service (2017) Tide tables. Ocean, BeijingGoogle Scholar
  38. Newton I (2008) The migration ecology of birds. Academic Press, LondonGoogle Scholar
  39. Pomeroy AC, Butler RW, Ydenberg RC (2006) Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger. Behav Ecol 17:1041–1045Google Scholar
  40. Pomeroy AC, Seaman DAA, Butler RW, Elner RW, Williams TD, Ydenberg RC (2008) Feeding–danger trade-offs underlie stopover site selection by migrants. Avian Conserv Ecol 3:580–584Google Scholar
  41. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 22 Jan 2017
  42. Santiago-Quesada F, Estrella SM, Sánchez-Guzmán JM, Masero JA (2014) Why water birds forage at night: a test using Black-tailed Godwits Limosa limosa during migratory periods. J Avian Biol 45:406–409Google Scholar
  43. Sanzenbacher PM, Haig SM (2002) Residency and movement patterns of wintering Dunlin in the Willamette Valley of Oregon. Condor 104:271–280Google Scholar
  44. Sinnott RW (1984) Virtues of the Haversine. Sky Telesc 68:159Google Scholar
  45. Sitters HP, Gonzalez PM, Piersma T, Baker AJ, Price DJ (2001) Day and night feeding habitat of Red Knots in Patagonia: profitability versus safety? J Field Ornithol 72:86–95Google Scholar
  46. Spiegel O, Leu ST, Bull CM, Sih A (2017) What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol Lett 20:3–18PubMedGoogle Scholar
  47. Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86:640–657PubMedGoogle Scholar
  48. Turpie JK, Hockey PAR (1993) Comparative diurnal and nocturnal foraging behaviour and energy intake of premigratory Grey Plovers Pluvialis squatarola and Whimbrels Numenius phaeopus in South Africa. Ibis 135:156–165Google Scholar
  49. Uhlig R (1990) On the migration of the Whimbrel, Numenius phaeopus, in Bulgaria. Zool Middle East 4:33–38Google Scholar
  50. Van den Hout PJ, Piersma T, Horn JT, Spaans B, Lok T (2017) Individual shifts toward safety explain age-related foraging distribution in a gregarious shorebird. Behav Ecol 28:419–428Google Scholar
  51. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkGoogle Scholar
  52. Watts BD, Truitt BR (2011) Decline of Whimbrels within a Mid-Atlantic staging area (1994–2009). Waterbirds 34:347–351Google Scholar
  53. Zhu J, Jing K, Gan XJ, Ma ZJ (2007) Food supply in intertidal area for shorebirds during stopover at Chongming Dongtan, China. Acta Ecol Sin 27:2149–2159Google Scholar
  54. Zwarts L (1990) Increased prey availability drives premigration hyperphagia in Whimbrels and allows them to leave the Banc d’Arguin, Mauritania, in spring. Ardea 78:279–300Google Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  • Fenliang Kuang
    • 1
    • 2
  • Wei Wu
    • 3
  • Wanjuan Ke
    • 1
  • Qiang Ma
    • 3
  • Weipin Chen
    • 3
  • Xuesong Feng
    • 3
  • Zhengwang Zhang
    • 4
  • Zhijun Ma
    • 1
    Email author
  1. 1.Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary Shanghai Institute of Eco-ChongmingFudan UniversityShanghaiChina
  2. 2.School of Chemistry and Life SciencesChuxiong Normal UniversityChuxiongChina
  3. 3.Shanghai Chongming Dongtan National Nature ReserveShanghaiChina
  4. 4.Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations