Advertisement

Behavioural responses to human disturbance in an alpine bird

  • Cristina VallinoEmail author
  • Enrico CaprioEmail author
  • Fabrizio Genco
  • Dan Chamberlain
  • Claudia Palestrini
  • Angela Roggero
  • Massimo Bocca
  • Antonio Rolando
Original Article

Abstract

Mountain habitats are threatened by several factors, including human activities at high elevation, although the negative impacts can sometimes be balanced by positive effects related to human presence. However, knowledge of such interactions is limited in alpine ecosystems. In the study reported here, we assessed the extent of behavioural responses of the Alpine Chough Pyrrhocorax graculus, a bird species found in high-elevation habitats, to differing levels of human disturbance in two alpine areas, a ski resort popular with tourists year-round (‘disturbed site’), and a protected area with low tourist activity (‘undisturbed area’). As the accessibility and distribution of food is a potential factor affecting bird behaviour, we focused on the availability of food types to better discriminate between the effect of food and direct disturbance. We found that human presence was negatively associated with intake rates and amount of time spent in a foraging patch (‘stay time’). Moreover, vigilance and flushing distances were shorter in the disturbed site than in the undisturbed area. However, intake rates were highest and stay times were shortest in the site where anthropogenic food (mostly discarded food items) was available. The abundance of a key prey type, grasshopper, changed significantly over space and time and was lower in the more developed ski area, probably due to the presence of ski pistes. In conclusion, the study highlighted that human disturbance potentially affects foraging behaviour in Alpine Choughs and that the effects could be both positive and negative. Further investigations are needed to better disentangle the effects induced by direct and indirect disturbance and, more generally, to evaluate the potential benefits and negative effects of anthropization on mountain biodiversity.

Keywords

Alpine Chough Grasshoppers Habituation Foraging 

Zusammenfassung

Einfluss von anthropogenen Störungen auf das Nahrungsverhalten einer alpinen Vogelart

Habitate in Bergregionen sind durch mehrere Faktoren gefährdet, einschließlich der anthropogenen Aktivitäten, wobei negative Einflüsse durch positive Effekte derselben ausgeglichen werden können. Jedoch ist das Wissen bezüglich solcher Interaktionen in alpinen Ökosystemen noch sehr limitiert. Mithilfe von Untersuchungen an der Alpendohle Pyrrhocorax graculus, einer Hochland-Art, wurde das Verhalten in Bezug auf verschiedene Grade von anthropogener Störung untersucht. Dabei wurden zwei verschiedene alpine Gebiete miteinander verglichen, wobei das eine ein stark und das ganze Jahr hindurch genutztes Skigebiet und das andere ein Schutzgebiet mit geringer anthropogener Störung darstellt. Da der Zugang zu und die Verteilung von Futter einen möglichen Einfluss auf das Verhalten der Tiere haben, haben wir uns auf die Verfügbarkeit von verschiedenen Nahrungsressourcen konzentriert, um besser zwischen dem Einfluss der Nahrungsverfügbarkeit und der anthropogenen Störung auf das Verhalten unterscheiden zu können. Die Anwesenheit von Menschen war negativ mit den Aufnahmeraten von Nahrung und der Dauer des Aufenthalts an einem Nahrungsplatz assoziiert. Weiterhin waren die Distanz, bis Wachsamkeitsverhalten auftrat, und die Fluchtdistanz im gestörten Gebiet geringer als im weniger gestörten Gebiet. Dennoch waren die Aufnahmeraten am Höchsten und die Aufenthaltsdauer am Kürzesten, wo anthropogene Nahrungsressourcen (hauptsächlich weggeworfene Nahrungsmittel) vorhanden waren. Die Abundanz einer der Hauptnahrungsressourcen der Art, Heuschrecken, änderte sich signifikant mit Zeit und Ort und war in Skigebieten deutlich geringer, was vermutlich auf die Skipisten zurückzuführen ist. Schließlich konnten wir zeigen, dass anthropogene Störungen das Nahrungsverhalten bei Alpendohlen beeinflussen, sowohl positiv wie auch negativ. Weiterführende Untersuchungen sind notwendig, um besser zwischen den Einflüssen von direkten und indirekten Störungen diskriminieren zu können und im Generellen die möglichen Vor- und Nachteile der Anthropisierung auf die Biodiversität in Bergregionen einzuschätzen.

Notes

Acknowledgments

We thank Cervino spa for allowing us the use of ski lifts, and for the data provided. We also thank Professor Bruno Massa for help with grasshopper identification, and all field workers: Gioele Brotto, Sara Beggiato, Francesca Bosio, Luca Calcagno, Julia Milan, Giorgio Gentile and Alessandro Lago.

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Data policy

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Arlettaz R, Sébastien N, Marjana N, Peter V, Rupert P, Jenni-Eiermann S, Patthey P, Genoud M (2015) Disturbance of wildlife by outdoor winter recreation: allostatic stress response and altered activity–energy budgets. Ecol Appl 25:1197–1212.  https://doi.org/10.1890/14-1141.1 CrossRefGoogle Scholar
  2. Bàtary P, Kurucz K, Suarez-Rubio M, Chamberlain D (2018) Non-linearities in bird responses across urbanization gradients: a meta-analysis. Glob Change Biol 24:1046–1054CrossRefGoogle Scholar
  3. Bazzi G, Foglini C, Brambilla M, Saino N, Rubolini D (2015) Habitat management effects on Prealpine grassland bird communities. Ital J Zool 82:251–261.  https://doi.org/10.1080/11250003.2014.983566 Google Scholar
  4. Beale CM, Monaghan P (2004) Behavioural responses to human disturbance: a matter of choice? Anim Behav 68:1065–1069.  https://doi.org/10.1016/j.anbehav.2004.07.002 CrossRefGoogle Scholar
  5. Brambilla M, Pedrini P, Rolando A, Chamberlain DE (2016) Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J Biogeogr 43:2299–2309.  https://doi.org/10.1111/jbi.12796 CrossRefGoogle Scholar
  6. Bridge ES, Schoech SJ, Bowman R, Wingfield JC (2009) Temporal predictability in food availability: effects upon the reproductive axis in Scrub-Jays. J Exp Zool 311A:35–44.  https://doi.org/10.1002/jez.493 CrossRefGoogle Scholar
  7. Caprio E, Chamberlain D, Rolando A (2016) Ski-piste revegetation promotes partial bird community recovery in the European Alps. Bird Study 63:470–478.  https://doi.org/10.1080/00063657.2016.1216520 CrossRefGoogle Scholar
  8. Concepción ED, Obrist MK, Moretti M, Altermatt F, Baur B, Nobis MP (2016) Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: not only built-up area matters. Urban Ecosyst 19:225–242.  https://doi.org/10.1007/s11252-015-0474-4 CrossRefGoogle Scholar
  9. Delestrade A (1995) Impact of human activity on foraging flocks and populations of Alpine Chough Pyrrhocorax graculus. Avocetta 19:189–193Google Scholar
  10. Delestrade A, Stoyanov G (1995) Breeding biology and survival of the Alpine Chough Pyrrhocorax graculus. Bird Study 42(3):222–231.  https://doi.org/10.1080/00063659509477171 CrossRefGoogle Scholar
  11. Ellenberg U, Setiawan AN, Cree A, Houston DM, Seddon PJ (2007) Elevated hormonal stress response and reduced reproductive output in Yellow-eyed penguins exposed to unregulated tourism. Gen Comp Endocrinol 152:54–63.  https://doi.org/10.1016/j.ygcen.2007.02.022 CrossRefGoogle Scholar
  12. Fernández-Juricic E, Tellería JL (2000) Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47:13–21.  https://doi.org/10.1080/00063650009461156 CrossRefGoogle Scholar
  13. Gilbert NI, Carreia RA, Silva JP, Pacheco C, Catry I, Atkinson PW, Gill JA, Franco AMA (2016) Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov Ecol 4:7.  https://doi.org/10.1186/s40462-016-0070-0 CrossRefGoogle Scholar
  14. Gill JA (2007) Approaches to measuring the effects of human disturbance on birds. Ibis 149:9–14.  https://doi.org/10.1111/j.1474-919X.2007.00642.x CrossRefGoogle Scholar
  15. Grémillet D, Pichegru L, Kuntz G, Woakes AG, Wilkinson S, Crawford RJM, Ryan PG (2008) A junk-food hypothesis for gannets feeding on fishery waste. Proc Biol Sci 275:1149–1156CrossRefGoogle Scholar
  16. Hanmer HJ, Thomas RL, Fellowes MDE (2017) Provision of supplementary food for wild birds may increase the risk of local nest predation. Ibis 159:158–167.  https://doi.org/10.1111/ibi.12432 CrossRefGoogle Scholar
  17. Jähnig S, Alba R, Vallino C, Rosselli D, Pittarello M, Rolando A, Chamberlain D (2018) The contribution of broadscale and finescale habitat structure to the distribution and diversity of birds in an Alpine forest-shrub ecotone. J Ornithol 159:1–13.  https://doi.org/10.1007/s10336-018-1549-9 CrossRefGoogle Scholar
  18. Jiménez G, Meléndez L, Blanco G, Laiolo P (2013) Dampened behavioral responses mediate birds’ association with humans. Biol Conserv 159:477–483.  https://doi.org/10.1016/j.biocon.2012.10.030 CrossRefGoogle Scholar
  19. Jokimäki J, Suhonenb J, Vuorisaloc T, Kövér D, Kaisanlahti-Jokimäki M (2017) Urbanization and nest-site selection of the Black-billed Magpie (Pica pica) populations in two finnish cities: from a persecuted species to an urban exploiter. Landsc Urban Plan 157:577–585.  https://doi.org/10.1016/j.landurbplan.2016.08001 CrossRefGoogle Scholar
  20. Kurosawa R, Kono R, Kondo T, Kanai Y (2003) Diet of jungle crows in an urban landscape. Global Environ Res 7:193–198Google Scholar
  21. Laiolo P, Rolando A (1999) The diet of the Chough (Pyrrhocorax pyrrhocorax) and the Alpine Chough (Pyrrhocorax graculus) in the Alps: seasonality, resource partitioning and population density. Rev Ecol (Terre Vie) 54:133–147Google Scholar
  22. Laiolo P, Rolando A, Carisio L (2001) Winter movements of the alpine chough: implications for management in the alps. J Mt Ecol 6:21–30Google Scholar
  23. Mont Avic Natural Park Champdepraz (AO) Italy (2017) Environmental statement EMAS 2015-2017. http://www.montavic.it/index.php/Per-saperne-di-piu/Certificazione-ambientale. Accessed 1 Mar 2019
  24. Negro M, Isaia M, Palestrini C, Schoenhofer A, Rolando A (2010) The impact of high-elevation ski pistes on ground-dwelling arthropods in the Alps. Biodivers Conserv 19:1853–1870.  https://doi.org/10.1007/s10531-010-9808-y CrossRefGoogle Scholar
  25. Oro D, Genovart M, Tavecchia G, Fowler MS, Martìnez-Abraìn A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514.  https://doi.org/10.1111/ele.12187 CrossRefGoogle Scholar
  26. Probo M, Lonati M, Pittarello M, Bailey DW, Garbarino M, Gorlier A, Lombardi G (2014) Implementation of a rotational grazing system with large paddocks changes the distribution of grazing cattle in the south-western Italian Alps. Rangel J 36:445–458.  https://doi.org/10.1071/RJ14043 CrossRefGoogle Scholar
  27. Remacha C, Pérez-Tris J, Delgado JA (2011) Reducing visitors’ group size increases the number of birds during educational activities: implications for management of nature-based recreation. J Environ Manag 92:1564–1568.  https://doi.org/10.1016/j.jenvman.2011.01.006 CrossRefGoogle Scholar
  28. Rixen C, Rolando A (2013) The impacts of skiing and related winter recreational activities on mountain environments. Bentham Books.  https://doi.org/10.2174/97816080548861130101
  29. Robb GN, McDonald RA, Chamberlain D, Bearhop S (2008) Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front Ecol Environ 6:476–484.  https://doi.org/10.1890/060152 CrossRefGoogle Scholar
  30. Rolando A, Laiolo P (1997) A comparative analysis of the diets of the Chough Pyrrhocorax pyrrhocorax and the Alpine Chough Pyrrhocorax graculus coexisting in the Alps. Ibis 139:388–395.  https://doi.org/10.1111/j.1474-919X.1997.tb04639x CrossRefGoogle Scholar
  31. Rolando A, Patterson IJ (1993a) Foraging behaviour and diet of the Alpine Chough Pyrrhocorax graculus in the Italian Alps in summer. J Ornithol 134:181–187.  https://doi.org/10.1007/BF01640087 CrossRefGoogle Scholar
  32. Rolando A, Patterson IJ (1993b) Range and movements of the alpine chough Pyrrhocorax graculus in relation to human developments in the Italian alps in summer. J Ornithol 134:338–344.  https://doi.org/10.1007/BF01640430 CrossRefGoogle Scholar
  33. Rolando A, Caldoni R, De Sanctis A, Laiolo P (2001) Vigilance and neighbour distance in foraging flocks of Red-billed Choughs, Pyrrhocorax pyrrhocorax. J Zool 253:225–232.  https://doi.org/10.1017/S095283690100019X CrossRefGoogle Scholar
  34. Rolando A, Laiolo P, Carisio L (2003) Urbanization and the flexibility of the foraging ecology of the Alpine Chough Pyrrhocorax graculus in winter. Rev Ecol (Terre Vie) 58:337–352Google Scholar
  35. Schoech SJ, Bowman R, Bridge ES, Boughton RK (2007) Baseline and acute levels of corticosterone in Florida Scrub-Jays (Aphelocoma coerulescens): effects of food supplementation, suburban habitat, and year. Gen Comp Endocrinol 154:150–160.  https://doi.org/10.1016/j.ygcen.2007.05.027 CrossRefGoogle Scholar
  36. Shochat E (2004) Credit or debit? resource input changes population dynamics of city-slicker birds. Oikos 106:622–626CrossRefGoogle Scholar
  37. Skaug H, Fournier D, Nielsen A (2006) glmmADMB: generalized linear mixed models using AD model builder. R package version 0.3. http://glmmadmb.r-forge.r-project.org
  38. Støstad HN, Aldwinckle P, Allan A, Arnold KE (2017) Foraging on human-derived foods by urban bird species. Bird Study 64:178–186.  https://doi.org/10.1080/00063657.2017.1311836 CrossRefGoogle Scholar
  39. R Development Core Team (2015) R: A language and environment for statistical computing. Vienna, The R Foundation for Statistical ComputingGoogle Scholar
  40. Tomasevic JA, Marzluff JM (2017) Cavity nesting birds along an urban-wildland gradient: is human facilitation structuring the bird community? Urban Ecosyst 20:435–448.  https://doi.org/10.1007/s11252-016-0605-6 CrossRefGoogle Scholar
  41. West EH, Peery MZ (2017) Behavioral mechanisms leading to improved fitness in a subsidized predator. Oecologia 184:787–798.  https://doi.org/10.1007/s00442-017-3898-0 CrossRefGoogle Scholar
  42. Will A, Watanuki Y, Kikuchi DM, Sato N, Ito M, Callahan M, Wynne-Edwards K, Hatch S, Elliott K, Slater L, Takahashi A, Kitaysky A (2015) Feather corticosterone reveals stress associated with dietary changes in a breeding seabird. Ecol Evol 5(19):4221–4232.  https://doi.org/10.1002/ece3.1694 CrossRefGoogle Scholar
  43. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R statistics for biology and health. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Department of Life Sciences and Systems BiologyUniversity of TurinTurinItaly
  2. 2.Mont Avic Natural ParkChampdeprazItaly

Personalised recommendations