Advertisement

Prevalence of BFDV in wild breeding Platycercus elegans

  • Justin R. EastwoodEmail author
  • Mathew L. Berg
  • Raoul F. H. Ribot
  • Katherine L. Buchanan
  • Ken Walder
  • Andrew T. D. Bennett
Original Article

Abstract

Pathogens can have a profound impact on the population dynamics of avian populations. Beak and feather disease virus (BFDV) is considered one of the few pathogens capable of causing extinction, because it predominantly infects the highly threatened order Psittaciformes, the signs of disease are severe, and mortality can be extremely high. Little is known about BFDV in wild populations, particularly its distribution among wild breeding birds. We investigated patterns of BFDV infection in family groups across three different subspecies of a common southeast Australian parrot (Platycercus elegans). We predicted that due to the high degree of contact, shared environment and high relatedness within family units, the prevalence of infection would be uniform. However, we found more non-infected breeding pairs than expected if there was random mating, whilst cases where both pair members were infected were observed less often than expected under random mating. When one pair member was infected, it was sex-biased, with males rarely infected. We found that parental infection status did not explain nestling infection status, suggesting that other infection routes (e.g. from the hollow or nest material) are likely. Future work is needed to assess transmission and behavioural mechanisms that explain patterns of infection among breeding birds.

Keywords

BFDV Psittacine circovirus Psittaciformes Infection Platycercus elegans 

Zusammenfassung

Prävalenz von BFDV beim wild lebenden Pennantsittich Platycercus elegans

Pathogene können tiefgreifende Auswirkungen auf die Populationsdynamik von Vogelpopulationen haben. Der Virus BFDV (englisch: beak and feather disease virus) gilt als eines der wenigen Pathogene, die zum Aussterben einer Art führen können, da es überwiegend die stark gefährdete Ordnung Psittaciformes infiziert. Die Krankheitsanzeichen sind schwerwiegend und die Sterblichkeit kann extrem hoch sein. Wenig ist über die BFDV in Wildpopulationen bekannt, vor allem über dessen Verbreitung innerhalb wild lebender Arten. Wir untersuchten die Muster der BFDV-Infektion in Familiengruppen innerhalb von drei verschiedenen Unterarten einer häufigen südostaustralischen Papageienart, dem Pennantsittich (Platycercus elegans). Unsere Vorhersage war, dass aufgrund des häufigen Kontakts, der gemeinsamen Nutzung der Umgebung und der hohen Verbundenheit innerhalb der Familiengruppen, die Prävalenz der Infektion gleichmäßig verteilt sein würde. Jedoch haben wir mehr nicht infizierte Brutpaare gefunden als zu erwarten wäre, wenn es nur zufällige Verpaarungen gegeben hätte. Fälle, in denen beide Partner infiziert waren, kamen hingegen seltener vor als bei zufälliger Verpaarung zu erwarten gewesen wäre. Wenn nur einer der Brutpartner infiziert war, war die Infektion meist geschlechtsspezifisch, mit seltener infizierten Männchen. Wir fanden heraus, dass der Infektionsstatus der Küken nicht durch den elterlichen Infektionsstatus erklärt wurde, was darauf schließen lässt, dass andere Infektionswege (z. B. durch Nisthöhle oder -material) wahrscheinlich sind. Weitere Arbeiten sind notwendig, um Übertragungs- und Verhaltensmechanismen zu erkennen, die das Infektionsmuster innerhalb von Brutvögeln erklären.

Notes

Acknowledgements

We would like to thank the field site landowners, especially the Austin, Ashton, Becker, Buckeridge, Colton, Charas, Graves, Henzel, Knaggs, Laucke, Maguire, McIntosh, McKendrick, Myers, Piper, Roberts, Sharp, and Snell families, as well as Eliza Larson, Milla Mihailova and volunteers for assistance in the field. We would also like to thank Edward Holmes, Trevor Price, Barbara Tshirren and several reviewers for taking time to provide valuable feedback on earlier drafts of this work. The manuscript was greatly improved as a result of their critique. Funding for this research was provided by the Australian Research Council (LP140100691; DP180103494), a Birdlife Australia Stuart Leslie Research Award, Holsworth Wildlife Research Endowment, and Deakin University. All sampling procedures were approved by Deakin University’s ethics committee, and all research conformed to the laws of Australia and the states of Victoria, South Australia, and New South Wales. Bird banding was done with approval from the Australian Bird and Bat Banding Scheme.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Able DJ (1996) The contagion indicator hypothesis for parasite-mediated sexual selection. Proc Natl Acad Sci 93:2229–2233CrossRefGoogle Scholar
  2. Andreou D, Eizaguirre C, Boehm T, Milinski M (2017) Mate choice in sticklebacks reveals that immunogenes can drive ecological speciation. Behav Ecol 28:953–961.  https://doi.org/10.1093/beheco/arx074 CrossRefGoogle Scholar
  3. Bassami M, Ypelaar I, Berryman D, Wilcox G, Raidal S (2001) Genetic diversity of beak and feather disease virus detected in psittacine species in Australia. Virology 279:392–400.  https://doi.org/10.1006/viro.2000.0847 CrossRefGoogle Scholar
  4. Berg ML, Bennett ATD (2010) The evolution of plumage colouration in parrots: a review. Emu 110:10–20.  https://doi.org/10.1071/Mu09076 CrossRefGoogle Scholar
  5. Berg ML, Ribot RFH (2008) A simple, inexpensive trap for capturing parrots and other cavity nesting birds. Corella 32:78–79Google Scholar
  6. Bert E, Tomassone L, Peccati C, Navarrete M, Sola S (2005) Detection of beak and feather disease virus (BFDV) and avian polyomavirus (APV) DNA in psittacine birds in Italy. J Vet Med 52:64–68CrossRefGoogle Scholar
  7. Bierbower SM, Sparkes TC (2007) Parasite-related pairing success in an intermediate host, Caecidotea intermedius (Isopoda): effects of male behavior and reproductive physiology. J Parasitol 93:445–449.  https://doi.org/10.1645/ge-960r1.1 CrossRefGoogle Scholar
  8. Bonne N, Shearer P, Sharp M, Clark P, Raidal S (2009) Assessment of recombinant beak and feather disease virus capsid protein as a vaccine for psittacine beak and feather disease. J Gen Virol 90:640–647.  https://doi.org/10.1099/vir.0.006932-0 CrossRefGoogle Scholar
  9. Chakarov N, Linke B, Boerner M, Goesmann A, Krüger O, Hoffman JI (2015) Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol 24:1355–1363.  https://doi.org/10.1111/mec.13115 CrossRefGoogle Scholar
  10. Clayton DH, Tompkins DM (1994) Ectoparasite virulence is linked to mode of transmission. Proc R Soc B 256:211–217.  https://doi.org/10.1098/rspb.1994.0072 CrossRefGoogle Scholar
  11. Doneley RJT (2003) Acute beak and feather disease in juvenile African grey parrots—an uncommon presentation of a common disease. Aust Vet J 81:206–207.  https://doi.org/10.1111/j.1751-0813.2003.tb11472.x CrossRefGoogle Scholar
  12. Eastwood JR, Berg ML, Ribot RFH, Raidal SR, Buchanan KL, Walder KR, Bennett ATD (2014) Phylogenetic analysis of beak and feather disease virus across a host ring-species complex. Proc Natl Acad Sci USA 111:14153–14158.  https://doi.org/10.1073/pnas.1403255111 CrossRefGoogle Scholar
  13. Eastwood JR, Berg ML, Spolding B, Buchanan KL, Bennett ATD, Walder K (2015) Prevalence of beak and feather disease virus in wild Platycercus elegans: comparison of three tissue types using a probe-based real-time qPCR test Aust. J Zool 63:1–8Google Scholar
  14. Eastwood JR, Ribot RFH, Rollins LA, Buchanan KL, Walder K, Bennett ATD, Berg ML (2017) Host heterozygosity and genotype rarity affect viral dynamics in an avian subspecies complex. Sci Rep 7:13310.  https://doi.org/10.1038/s41598-017-13476-z CrossRefGoogle Scholar
  15. Eastwood JR et al (2018) Pair fidelity in long-lived parrots: genetic and behavioural evidence from the Crimson Rosella (Platycercus elegans). Emu.  https://doi.org/10.1080/01584197.2018.1453304 Google Scholar
  16. Forshaw JM, Cooper WT (2002) Australian parrots, 3rd edn. Alexander Editions, New YorkGoogle Scholar
  17. Galipaud M, Gauthey Z, Bollache L (2011) Pairing success and sperm reserve of male Gammarus pulex infected by Cyathocephalus truncatus (Cestoda: Spathebothriidea). Parasitology 138:1429–1435.  https://doi.org/10.1017/s0031182011001247 CrossRefGoogle Scholar
  18. Gregory RD, Montgomery SSJ, Montgomery WI (1992) Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. J Anim Ecol 61:749–757.  https://doi.org/10.2307/5628 CrossRefGoogle Scholar
  19. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075.  https://doi.org/10.1046/j.1365-294x.1998.00389.x CrossRefGoogle Scholar
  20. Hamilton W, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387.  https://doi.org/10.1126/science.7123238 CrossRefGoogle Scholar
  21. Heath L et al (2004) Evidence of unique genotypes of beak and feather disease virus in Southern Africa. J Virol 78:9277–9284.  https://doi.org/10.1128/jvi.78.17.9277-9284.2004 CrossRefGoogle Scholar
  22. Ilmonen P, Taarna T, Hasselquist D (2000) Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. Proc R Soc B 267:665–670.  https://doi.org/10.1098/rspb.2000.1053 CrossRefGoogle Scholar
  23. Joseph L, Dolman G, Donnellan S, Saint KM, Berg ML, Bennett ATD (2008) Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots. Proc R Soc B 275:2431–2440CrossRefGoogle Scholar
  24. Khalesi B, Bonne N, Stewart M, Sharp M, Raidal S (2005) A comparison of haemagglutination, haemagglutination inhibition and PCR for the detection of psittacine beak and feather disease virus infection and a comparison of isolates obtained from loriids. J Gen Virol 86:3039–3046.  https://doi.org/10.1099/vir.0.81275-0 CrossRefGoogle Scholar
  25. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006) Host heterogeneity dominates West Nile virus transmission. Proc R Soc B 273:2327–2333.  https://doi.org/10.1098/rspb.2006.3575 CrossRefGoogle Scholar
  26. Klein SL (2004) Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol 26:247–264.  https://doi.org/10.1111/j.0141-9838.2004.00710.x CrossRefGoogle Scholar
  27. Krebs EA (1998) Breeding biology of crimson rosellas (Platycercus elegans) on Black Mountain, Australian Capital Territory Australian. J Zool 46:119–136Google Scholar
  28. Krebs EA, Magrath RD (2000) Food allocation in crimson rosella broods: parents differ in their responses to chick hunger. Anim Behav 59:739–751CrossRefGoogle Scholar
  29. Kundu S et al (2012) Tracking viral evolution during a disease outbreak: the rapid and complete selective sweep of a circovirus in the endangered Echo parakeet. J Virol 86:5221–5229.  https://doi.org/10.1128/JVI.06504-11 CrossRefGoogle Scholar
  30. LaDeau SL, Kilpatrick AM, Marra PP (2007) West Nile virus emergence and large-scale declines of North American bird populations. Nature 447:710.  https://doi.org/10.1038/nature05829 CrossRefGoogle Scholar
  31. Larson ER, Eastwood JR, Buchanan KL, Bennett ATD, Berg ML (2015) How does nest box temperature affect nestling growth rate and breeding success in a parrot? Emu 115:247–255CrossRefGoogle Scholar
  32. Leu S, Kappeler P, Bull CM (2010) Refuge sharing network predicts ectoparasite load in a lizard. Behav Ecol Sociobiol 64:1495–1503.  https://doi.org/10.1007/s00265-010-0964-6 CrossRefGoogle Scholar
  33. Martinez-Padilla J, Vergara P, Mougeot F, Redpath SM (2012) Parasitized mates increase infection risk for partners. Am Nat 179:811–820.  https://doi.org/10.1086/665664 CrossRefGoogle Scholar
  34. Mays HL, Hill GE (2004) Choosing mates: good genes versus genes that are a good fit. Trends Ecol Evol 19:554–559.  https://doi.org/10.1016/j.tree.2004.07.018 CrossRefGoogle Scholar
  35. Mihailova M, Berg ML, Buchanan KL, Bennett ATD (2014) Odour-based discrimination of subspecies, species and sexes in an avian species complex, the crimson rosella. Anim Behav 95:155–164.  https://doi.org/10.1016/j.anbehav.2014.07.012 CrossRefGoogle Scholar
  36. Mihailova M, Berg ML, Buchanan KL, Bennett ATD (2018) Olfactory eavesdropping: the odor of feathers is detectable to mammalian predators and competitors. Ethology 124:14–24CrossRefGoogle Scholar
  37. Møller AP (1990) Effects of a haematophagous mite on the barn swallow (Hirundo rustica): a test of the Hamilton and Zuk hypothesis. Evolution 44:771–784Google Scholar
  38. Pass D, Perry R (2008) The pathology of psittacine beak and feather disease. Aust Vet J 61:69–74CrossRefGoogle Scholar
  39. Peters A, Patterson EI, Baker BGB, Holdsworth M, Sarker S, Ghorashi SA, Raidal SR (2014) Evidence of psittacine beak and feather disease virus spillover into wild critically endangered orange-bellied parrots (Neoohema chrysogaster). J Wildl Dis 50:288–296.  https://doi.org/10.7589/2013-05-121 CrossRefGoogle Scholar
  40. Rahaus M, Desloges N, Probst S, Loebbert B, Lantermann W, Wolff M (2008) Detection of beak and feather disease virus DNA in embryonated eggs of psittacine birds. Vet Med 53:53CrossRefGoogle Scholar
  41. Raidal SR, Cross GM (1994) The haemagglutination spectrum of psittacine beak and feather disease virus. Avian Pathol 23:621–630CrossRefGoogle Scholar
  42. Raidal SR, Cross GM (1995) Acute necrotizing hepatitis caused by experimental infection with psittacine beak and feather disease virus. J Avian Med Surg 9:36–40Google Scholar
  43. Raidal SR, Peters A (2018) Psittacine beak and feather disease: ecology and implications for conservation Emu 118:80–93.  https://doi.org/10.1080/01584197.2017.1387029 Google Scholar
  44. Raidal SR, Sabine M, Cross GM (1993) Laboratory diagnosis of psittacine beak and feather disease by haemagglutination and haemagglutination inhibition. Aust Vet J 70:133–137.  https://doi.org/10.1111/j.1751-0813.1993.tb06104.x CrossRefGoogle Scholar
  45. Raveh S, Sutalo S, Thonhauser KE, Thoß M, Hettyey A, Winkelser F, Penn DJ (2014) Female partner preferences enhance offspring ability to survive an infection. BMC Evol Biol 14:14.  https://doi.org/10.1186/1471-2148-14-14 CrossRefGoogle Scholar
  46. Ribot RFH, Berg ML, Buchanan KL, Komdeur J, Joseph L, Bennett ATD (2009) Does the ring species concept predict vocal variation in the crimson rosella, Platycercus elegans, complex? Anim Behav 77:581–593CrossRefGoogle Scholar
  47. Ribot RFH, Berg ML, Buchanan KL, Bennett ATD (2011) Fruitful use of bioacoustic alarm stimuli as a deterrent for Crimson Rosellas (Platycercus elegans). Emu 111:360–367.  https://doi.org/10.1071/mu10080 CrossRefGoogle Scholar
  48. Ribot RFH, Buchanan KL, Endler JA, Joseph L, Bennett ATD, Berg ML (2012) Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex. PloS one 7:e50484.  https://doi.org/10.1371/journal.pone.0050484 CrossRefGoogle Scholar
  49. Ribot RFH, Berg ML, Buchanan KL, Bennett ATD (2013) Is there variation in the response to contact call playbacks across the hybrid zone of the parrot Platycercus elegans? J Avian Biol 44:399–407CrossRefGoogle Scholar
  50. Ritchie B, Niagro F, Latimer K, Steffens W, Pesti D, Ancona J, Lukert P (1991) Routes and prevalence of shedding of psittacine beak and feather disease virus. Am J Vet Res 52:1804Google Scholar
  51. Rohani P, Breban R, Stallknecht DE, Drake JM (2009) Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc Natl Acad Sci USA 106:10365–10369.  https://doi.org/10.1073/pnas.0809026106 CrossRefGoogle Scholar
  52. Sarker S, Ghorashi SA, Forwood JK, Bent SJ, Peters A, Raidal SR (2014) Phylogeny of beak and feather disease virus in cockatoos demonstrates host generalism and multiple-variant infections within Psittaciformes. Virology 460–461:72–82.  https://doi.org/10.1016/j.virol.2014.04.021 CrossRefGoogle Scholar
  53. Sarker S, Moylan KG, Ghorashi SA, Forwood JK, Peters A, Raidal SR (2015) Evidence of a deep viral host switch event with beak and feather disease virus infection in rainbow bee-eaters (Merops ornatus). Sci Rep 5:14511.  https://doi.org/10.1038/srep14511 CrossRefGoogle Scholar
  54. Schall J, Dearing M (1987) Malarial parasitism and male competition for mates in the western fence lizard, Sceloporus occidentalis. Oecologia 73:389–392CrossRefGoogle Scholar
  55. Sikorski A, Kearvell J, Elkington S, Dayaram A, Argüello-Astorga GR, Varsani A (2013) Novel ssDNA viruses discovered in yellow-crowned parakeet (Cyanoramphus auriceps) nesting material. Arch Virol 158:1603–1607.  https://doi.org/10.1007/s00705-013-1642-6 CrossRefGoogle Scholar
  56. Todd D (2000) Circoviruses: immunosuppressive threats to avian species: a review. Avian Pathol 29:373–394CrossRefGoogle Scholar
  57. Tollington S et al (2018) Individual consumption of supplemental food as a predictor of reproductive performance and viral infection intensity. J Appl Ecol.  https://doi.org/10.1111/1365-2664.13303 Google Scholar
  58. van Oers K, Richardson DS, Sæther SA, Komdeur J (2010) Reduced blood parasite prevalence with age in the Seychelles Warbler: selective mortality or suppression of infection? J Ornithol 151:69–77CrossRefGoogle Scholar
  59. van Riper C, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344.  https://doi.org/10.2307/1942550 CrossRefGoogle Scholar
  60. VanderWaal KL, Ezenwa VO (2016) Heterogeneity in pathogen transmission: mechanisms and methodology. Funct Ecol 30:1606–1622.  https://doi.org/10.1111/1365-2435.12645 CrossRefGoogle Scholar
  61. Wylie SL, Pass DA (1987) Experimental reproduction of psittacine beak and feather disease French molt. Avian Pathol 16:269–281CrossRefGoogle Scholar

Copyright information

© Deutsche Ornithologen-Gesellschaft e.V. 2019

Authors and Affiliations

  1. 1.Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongAustralia
  2. 2.School of Biological SciencesMonash UniversityMelbourneAustralia
  3. 3.Metabolic Research Unit, School of MedicineDeakin UniversityGeelongAustralia

Personalised recommendations